{"title":"Optimized Compressive Sensing Based ECG Signal Compression and Reconstruction","authors":"Ishani Mishra, Sanjay Jain","doi":"10.32604/iasc.2022.022860","DOIUrl":null,"url":null,"abstract":"In wireless body sensor network (WBSN), the set of electrocardiograms (ECG) data which is collected from sensor nodes and transmitted to the server remotely supports the experts to monitor the health of a patient. However, due to the size of the ECG data, the performance of the signal compression and reconstruction is degraded. For efficient wireless transmission of ECG data, compressive sensing (CS) frame work plays significant role recently in WBSN. So, this work focuses to present CS for ECG signal compression and reconstruction. Although CS minimizes mean square error (MSE), compression rate and reconstruction probability of the CS is further to be improved. In this paper, we provide an efficient compressive sensing framework which strives to improve the reconstruction process, by adjusting the sensing matrix during the compression phase using the rain optimization algorithm (ROA). With the optimal sensing matrix, the compressed signal is reconstructed using Step Size optimized Sparsity Adaptive Matching Pursuit algorithm (SAMP). The results of this work demonstrate that the optimised CS framework achieves a higher compression rate and probability of reconstruction than the standard CS framework.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"34 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Automation and Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/iasc.2022.022860","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
In wireless body sensor network (WBSN), the set of electrocardiograms (ECG) data which is collected from sensor nodes and transmitted to the server remotely supports the experts to monitor the health of a patient. However, due to the size of the ECG data, the performance of the signal compression and reconstruction is degraded. For efficient wireless transmission of ECG data, compressive sensing (CS) frame work plays significant role recently in WBSN. So, this work focuses to present CS for ECG signal compression and reconstruction. Although CS minimizes mean square error (MSE), compression rate and reconstruction probability of the CS is further to be improved. In this paper, we provide an efficient compressive sensing framework which strives to improve the reconstruction process, by adjusting the sensing matrix during the compression phase using the rain optimization algorithm (ROA). With the optimal sensing matrix, the compressed signal is reconstructed using Step Size optimized Sparsity Adaptive Matching Pursuit algorithm (SAMP). The results of this work demonstrate that the optimised CS framework achieves a higher compression rate and probability of reconstruction than the standard CS framework.
期刊介绍:
An International Journal seeks to provide a common forum for the dissemination of accurate results about the world of intelligent automation, artificial intelligence, computer science, control, intelligent data science, modeling and systems engineering. It is intended that the articles published in the journal will encompass both the short and the long term effects of soft computing and other related fields such as robotics, control, computer, vision, speech recognition, pattern recognition, data mining, big data, data analytics, machine intelligence, cyber security and deep learning. It further hopes it will address the existing and emerging relationships between automation, systems engineering, system of systems engineering and soft computing. The journal will publish original and survey papers on artificial intelligence, intelligent automation and computer engineering with an emphasis on current and potential applications of soft computing. It will have a broad interest in all engineering disciplines, computer science, and related technological fields such as medicine, biology operations research, technology management, agriculture and information technology.