Efficient Algorithms for Finding Approximate Heavy Hitters in Personalized PageRanks

Sibo Wang, Yufei Tao
{"title":"Efficient Algorithms for Finding Approximate Heavy Hitters in Personalized PageRanks","authors":"Sibo Wang, Yufei Tao","doi":"10.1145/3183713.3196919","DOIUrl":null,"url":null,"abstract":"Given a directed graph G, a source node s, and a target node t, the personalized PageRank (PPR of t with respect to s is the probability that a random walk starting from s terminates at t. The average of the personalized PageRank score of t with respect to each source node υ∈ V is exactly the PageRank score π( t ) of node t , which denotes the overall importance of node t in the graph. A heavy hitter of node t is a node whose contribution to π( t ) is above a φ fraction, where φ is a value between 0 and 1. Finding heavy hitters has important applications in link spam detection, classification of web pages, and friend recommendations. In this paper, we propose BLOG, an efficient framework for three types of heavy hitter queries: the pairwise approximate heavy hitter (AHH), the reverse AHH, and the multi-source reverse AHH queries. For pairwise AHH queries, our algorithm combines the Monte-Carlo approach and the backward propagation approach to reduce the cost of both methods, and incorporates new techniques to deal with high in-degree nodes. For reverse AHH and multi-source reverse AHH queries, our algorithm extends the ideas behind the pairwise AHH algorithm with a new \"logarithmic bucketing'' technique to improve the query efficiency. Extensive experiments demonstrate that our BLOG is far more efficient than alternative solutions on the three queries.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3196919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Given a directed graph G, a source node s, and a target node t, the personalized PageRank (PPR of t with respect to s is the probability that a random walk starting from s terminates at t. The average of the personalized PageRank score of t with respect to each source node υ∈ V is exactly the PageRank score π( t ) of node t , which denotes the overall importance of node t in the graph. A heavy hitter of node t is a node whose contribution to π( t ) is above a φ fraction, where φ is a value between 0 and 1. Finding heavy hitters has important applications in link spam detection, classification of web pages, and friend recommendations. In this paper, we propose BLOG, an efficient framework for three types of heavy hitter queries: the pairwise approximate heavy hitter (AHH), the reverse AHH, and the multi-source reverse AHH queries. For pairwise AHH queries, our algorithm combines the Monte-Carlo approach and the backward propagation approach to reduce the cost of both methods, and incorporates new techniques to deal with high in-degree nodes. For reverse AHH and multi-source reverse AHH queries, our algorithm extends the ideas behind the pairwise AHH algorithm with a new "logarithmic bucketing'' technique to improve the query efficiency. Extensive experiments demonstrate that our BLOG is far more efficient than alternative solutions on the three queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在个性化网页排名中寻找近似大人物的高效算法
给定一个有向图G,一个源节点s和一个目标节点t,个性化PageRank (t相对于s的PPR)是从s开始的随机行走在t处终止的概率。个性化PageRank分数t相对于每个源节点υ∈V的平均值正好是节点t的PageRank分数π(t),它表示节点t在图中的总体重要性。节点t的重击者是对π(t)的贡献大于φ分数的节点,其中φ是0到1之间的值。在垃圾链接检测、网页分类和好友推荐等方面,寻找重量级网站都有重要的应用。在本文中,我们提出了BLOG,一个有效的框架,用于三种类型的重磅查询:配对近似重磅查询(AHH),反向AHH和多源反向AHH查询。对于两两AHH查询,我们的算法结合了蒙特卡罗方法和反向传播方法,降低了两种方法的成本,并引入了新的技术来处理高入度节点。对于反向AHH和多源反向AHH查询,我们的算法扩展了两两AHH算法背后的思想,采用了新的“对数桶”技术来提高查询效率。大量的实验表明,在这三个查询上,我们的BLOG比其他解决方案要高效得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1