A batch processing algorithm for moving surface target tracking

M. Grabbe, J. W. McDerment, A. P. Douglas
{"title":"A batch processing algorithm for moving surface target tracking","authors":"M. Grabbe, J. W. McDerment, A. P. Douglas","doi":"10.1109/AERO.2012.6187201","DOIUrl":null,"url":null,"abstract":"This paper develops a batch processing algorithm that can be used to track a constant velocity surface target. The purpose of this algorithm is to facilitate passive tracking when sensor-target geometry is poor, which can prevent the convergence of a recursive estimator. The target's position is considered to be the output of an ordinary differential equation having unknown parameters to be estimated. This contrasts with the model used for the design of recursive estimators such as a Kalman filter where the target's position is the output of a dynamic system driven by white noise. Batch processing of all sensor measurements and Iterated Least-Squares (ILS) are used to estimate the target model parameters. Numerical integration is used to propagate the target's position and the Jacobian needed by ILS. Simulation results are shown for a maritime surveillance mission.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"19 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper develops a batch processing algorithm that can be used to track a constant velocity surface target. The purpose of this algorithm is to facilitate passive tracking when sensor-target geometry is poor, which can prevent the convergence of a recursive estimator. The target's position is considered to be the output of an ordinary differential equation having unknown parameters to be estimated. This contrasts with the model used for the design of recursive estimators such as a Kalman filter where the target's position is the output of a dynamic system driven by white noise. Batch processing of all sensor measurements and Iterated Least-Squares (ILS) are used to estimate the target model parameters. Numerical integration is used to propagate the target's position and the Jacobian needed by ILS. Simulation results are shown for a maritime surveillance mission.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动表面目标跟踪的批处理算法
本文提出了一种可用于等速表面目标跟踪的批处理算法。该算法的目的是为了方便在传感器目标几何形状较差的情况下进行被动跟踪,从而防止递推估计器的收敛性。目标的位置被认为是一个有未知参数待估计的常微分方程的输出。这与用于设计递归估计器(如卡尔曼滤波器)的模型形成对比,其中目标位置是由白噪声驱动的动态系统的输出。对所有传感器测量数据进行批量处理,利用迭代最小二乘法估计目标模型参数。采用数值积分法传播目标位置和盲视所需的雅可比矩阵。给出了海上监视任务的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-cost telepresence at technical conferences Design of a Stellar Gyroscope for visual attitude propagation for small satellites A cooperative search algorithm for highly parallel implementation of RANSAC for model estimation on Tilera MIMD architecture Open source software framework for applications in aeronautics and space Robonaut 2 — Initial activities on-board the ISS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1