Implementation of Clustering Algorithms for real datasets in Medical Diagnostics using MATLAB

B. Venkataramana, L. Padmasree, M. S. Rao, G. Ganesan, K. R. Krishna
{"title":"Implementation of Clustering Algorithms for real datasets in Medical Diagnostics using MATLAB","authors":"B. Venkataramana, L. Padmasree, M. S. Rao, G. Ganesan, K. R. Krishna","doi":"10.5899/2017/JSCA-00087","DOIUrl":null,"url":null,"abstract":"As in the medical field, for one disease there require samples given by diagnosis. The samples will be analyzed by a doctor or a pharmacist. As the no. of patients increases their samples also increases, there require more time to analyze samples for deciding the stage of the disease. To analyze the sample every time requires a skilled person. The samples can be classified by applying them to clustering algorithms. Data clustering has been considered as the most important raw data analysis method used in data mining technology. Most of the clustering techniques proved their efficiency in many applications such as decision making systems, medical sciences, earth sciences etc. Partition based clustering is one of the main approach in clustering. There are various algorithms of data clustering, every algorithm has its own advantages and disadvantages. This work reports the results of classification performance of three such widely used algorithms namely K-means (KM), Fuzzy c-means and Fuzzy Possibilistic c-Means (FPCM) clustering algorithms. To analyze these algorithms three known data sets from UCI machine learning repository are taken such as thyroid data, liver and wine. The efficiency of clustering output is compared with the classification performance, percentage of correctness. The experimental results show that K-means and FCM give same performance for liver data. And FCM and FPCM are giving same performance for thyroid and wine data. FPCM has more efficient classification performance in all the given data sets.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":"15 1","pages":"53-66"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2017/JSCA-00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

As in the medical field, for one disease there require samples given by diagnosis. The samples will be analyzed by a doctor or a pharmacist. As the no. of patients increases their samples also increases, there require more time to analyze samples for deciding the stage of the disease. To analyze the sample every time requires a skilled person. The samples can be classified by applying them to clustering algorithms. Data clustering has been considered as the most important raw data analysis method used in data mining technology. Most of the clustering techniques proved their efficiency in many applications such as decision making systems, medical sciences, earth sciences etc. Partition based clustering is one of the main approach in clustering. There are various algorithms of data clustering, every algorithm has its own advantages and disadvantages. This work reports the results of classification performance of three such widely used algorithms namely K-means (KM), Fuzzy c-means and Fuzzy Possibilistic c-Means (FPCM) clustering algorithms. To analyze these algorithms three known data sets from UCI machine learning repository are taken such as thyroid data, liver and wine. The efficiency of clustering output is compared with the classification performance, percentage of correctness. The experimental results show that K-means and FCM give same performance for liver data. And FCM and FPCM are giving same performance for thyroid and wine data. FPCM has more efficient classification performance in all the given data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学诊断中真实数据集聚类算法的MATLAB实现
就像在医学领域一样,对于一种疾病,需要通过诊断提供样本。这些样本将由医生或药剂师进行分析。作为no。随着患者数量的增加,他们的样本也会增加,这就需要更多的时间来分析样本,以确定疾病的阶段。每次分析样品都需要一个熟练的人。通过将样本应用于聚类算法,可以对样本进行分类。数据聚类是数据挖掘技术中最重要的原始数据分析方法。大多数聚类技术在决策系统、医学、地球科学等领域的应用证明了它们的有效性。基于分区的聚类是聚类的主要方法之一。数据聚类的算法有很多种,每种算法都有自己的优点和缺点。本工作报告了三种广泛使用的算法分类性能的结果,即K-means (KM),模糊c-means和模糊可能性c-means (FPCM)聚类算法。为了分析这些算法,我们从UCI机器学习存储库中获取了三个已知的数据集,如甲状腺数据、肝脏数据和葡萄酒数据。将聚类输出的效率与分类性能、正确率进行比较。实验结果表明,K-means和FCM对肝脏数据具有相同的性能。FCM和FPCM对甲状腺和葡萄酒数据的处理效果相同。FPCM在所有给定的数据集上都具有更高效的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Advances in Soft Computing and its Applications
International Journal of Advances in Soft Computing and its Applications Computer Science-Computer Science Applications
CiteScore
3.30
自引率
0.00%
发文量
31
期刊介绍: The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.
期刊最新文献
Insider Threat Prevention in the US Banking System Cybersecurity Strategies for Safeguarding Customer’s Data and Preventing Financial Fraud in the United States Financial Sectors Multilevel Thresholding Image Segmentation Based-Logarithm Decreasing Inertia Weight Particle Swarm Optimization Improvement on I-Devices Using L-GCNN Classifier for Smart Mosque Simulation Supervised Learning Algorithms for Predicting Customer Churn with Hyperparameter Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1