Uncertainty quantification of phase velocity surface waves multy-modal inversion using machine learning

A. Yablokov, A. Serdyukov
{"title":"Uncertainty quantification of phase velocity surface waves multy-modal inversion using machine learning","authors":"A. Yablokov, A. Serdyukov","doi":"10.33764/2618-981x-2022-2-2-312-318","DOIUrl":null,"url":null,"abstract":"The paper is devoted to uncertainty quantification of the inverse problem solution of the multichannel analysis of surface waves method - the inversion of the curves of the phase velocity via frequency dependence. The uncertainty estimation approach is based on the Monte Carlo sampling strategy and a multilayer fully connected artificial neural network to approximate nonlinear dependence of shear wave velocity and layers thickness via values of phase velocity surface waves. Frequency-dependent noise in the data and errors of the inverse operator are projected onto the inverse problem solution. The results of unimodal and multimodal inversion are compared on the example of synthetic data processing. The experimental results show that using of machine learning approaches makes it possible to quickly and accurately estimate the posterior probability density of the reconstructed velocity model parameters.","PeriodicalId":13672,"journal":{"name":"Interexpo GEO-Siberia","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interexpo GEO-Siberia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33764/2618-981x-2022-2-2-312-318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to uncertainty quantification of the inverse problem solution of the multichannel analysis of surface waves method - the inversion of the curves of the phase velocity via frequency dependence. The uncertainty estimation approach is based on the Monte Carlo sampling strategy and a multilayer fully connected artificial neural network to approximate nonlinear dependence of shear wave velocity and layers thickness via values of phase velocity surface waves. Frequency-dependent noise in the data and errors of the inverse operator are projected onto the inverse problem solution. The results of unimodal and multimodal inversion are compared on the example of synthetic data processing. The experimental results show that using of machine learning approaches makes it possible to quickly and accurately estimate the posterior probability density of the reconstructed velocity model parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的相速度面波多模态反演的不确定性量化
本文研究了多通道表面波分析方法反问题求解的不确定性量化——基于频率依赖的相速度曲线反演。不确定性估计方法是基于蒙特卡罗采样策略和多层全连接人工神经网络,通过相速度表面波的值来近似剪切波速与层厚的非线性关系。数据中的频率相关噪声和逆算子的误差被投影到反问题解中。以综合数据处理为例,比较了单峰和多峰反演的结果。实验结果表明,利用机器学习方法可以快速准确地估计重建速度模型参数的后验概率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Обоснование интервала-коллектора в разрезах баженовской свиты в центральной части Мансийской синеклизы (Западная Сибирь) Сравнение современных способов автоматизации процессов цифрового картографирования Typical vibration isolation systems and shock absorbers in on-board electronic equipment designs On one inverse dynamic problem of poroelasticity for a layered medium Siberia in journalism, memoirs and letters of exiled social-democrats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1