Dong-Xing Cao , Sha-Sha Li , Chang-Hai Zhan , Yi-Ming Lu , Jia-Jia Mao , Siu-Kai Lai
{"title":"Defect-mode-induced energy localization/harvesting of a locally resonant phononic crystal plate: Analysis of line defects","authors":"Dong-Xing Cao , Sha-Sha Li , Chang-Hai Zhan , Yi-Ming Lu , Jia-Jia Mao , Siu-Kai Lai","doi":"10.1016/j.iintel.2022.100001","DOIUrl":null,"url":null,"abstract":"<div><p>Phononic crystals that are artificially engineered structures have recently been introduced for vibration energy harvesting and sensing applications due to their unique features of band gaps and wave propagation control. Conventional energy harvesters made of phononic crystals are mainly designed for acoustic energy harvesting at a high-frequency vibration source (i.e., kHz levels). In this work, a defect-mode-induced energy harvester is designed for low-frequency excitations in the range of 0–300 Hz. The entire system that is a locally resonant phononic crystal (LRPC) plate with line defect patterns is consisted of elastic-wrapped core scatterers periodically embedded in epoxy resin. A two-dimensional (2D) three-component unit cell structure is arranged on the plate and the band gap property is analyzed to optimize the geometric parameters. Defects are then introduced to the LRPC plate with a 7 × 7 point array for analysis. In addition, numerical and experimental studies are conducted to investigate the performance of energy harvesting when attaching a piezoelectric patch on the defect points. The results demonstrate that the proposed LRPC vibration energy harvester having a line defect mode (with continuous or alternate points) shows good performance in energy harvesting, in which a peak power output of 42.72 mV can be achieved under 10 m/s<sup>2</sup> and 252 Hz. The performance is almost 6 times more than that of the single-point defect model under the same excitation conditions. The present LRPC-type energy harvester with a line defect mode is more suitable for energy harvesting for low-frequency and broadband conditions.</p></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"1 1","pages":"Article 100001"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772991522000019/pdfft?md5=b938ae73514bc4239591024bf8ace575&pid=1-s2.0-S2772991522000019-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991522000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Phononic crystals that are artificially engineered structures have recently been introduced for vibration energy harvesting and sensing applications due to their unique features of band gaps and wave propagation control. Conventional energy harvesters made of phononic crystals are mainly designed for acoustic energy harvesting at a high-frequency vibration source (i.e., kHz levels). In this work, a defect-mode-induced energy harvester is designed for low-frequency excitations in the range of 0–300 Hz. The entire system that is a locally resonant phononic crystal (LRPC) plate with line defect patterns is consisted of elastic-wrapped core scatterers periodically embedded in epoxy resin. A two-dimensional (2D) three-component unit cell structure is arranged on the plate and the band gap property is analyzed to optimize the geometric parameters. Defects are then introduced to the LRPC plate with a 7 × 7 point array for analysis. In addition, numerical and experimental studies are conducted to investigate the performance of energy harvesting when attaching a piezoelectric patch on the defect points. The results demonstrate that the proposed LRPC vibration energy harvester having a line defect mode (with continuous or alternate points) shows good performance in energy harvesting, in which a peak power output of 42.72 mV can be achieved under 10 m/s2 and 252 Hz. The performance is almost 6 times more than that of the single-point defect model under the same excitation conditions. The present LRPC-type energy harvester with a line defect mode is more suitable for energy harvesting for low-frequency and broadband conditions.