{"title":"Addressing cold start in recommender systems with neural networks: a literature survey","authors":"Fjolla Berisha, E. Bytyçi","doi":"10.1080/1206212X.2023.2237766","DOIUrl":null,"url":null,"abstract":"Filtering information on the Internet and recommending the right choices is more than important for Internet users and various businesses that offer products and services. Although recommender systems do this work efficiently, problems such as Cold Start often appear when new users or items enter the system. The traditional methods of recommender systems, collaborative filtering and content–based techniques, do not offer an optimized solution to this problem. The integration of neural networks in recommender systems offers a new approach to solving cold start. Whether using the feature of extracting hidden data, or using deep learning algorithms with more layers, the accuracy of recommendations and predictions has increased significantly. We have analyzed 40 papers that approached solving the cold start problem using neural networks. We have researched how neural networks are integrated into recommender systems, what they are used for, which neural network algorithms have shown to be more efficient in solving the cold start problem, and which algorithms have increased the accuracy of the recommendation. We aim to answer these questions with other subquestions related to types of cold start such as item or user cold start and warm, partial, or strict cold start.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"95 1","pages":"485 - 496"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2237766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Filtering information on the Internet and recommending the right choices is more than important for Internet users and various businesses that offer products and services. Although recommender systems do this work efficiently, problems such as Cold Start often appear when new users or items enter the system. The traditional methods of recommender systems, collaborative filtering and content–based techniques, do not offer an optimized solution to this problem. The integration of neural networks in recommender systems offers a new approach to solving cold start. Whether using the feature of extracting hidden data, or using deep learning algorithms with more layers, the accuracy of recommendations and predictions has increased significantly. We have analyzed 40 papers that approached solving the cold start problem using neural networks. We have researched how neural networks are integrated into recommender systems, what they are used for, which neural network algorithms have shown to be more efficient in solving the cold start problem, and which algorithms have increased the accuracy of the recommendation. We aim to answer these questions with other subquestions related to types of cold start such as item or user cold start and warm, partial, or strict cold start.
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.