Defining and Predicting the Localness of Volunteered Geographic Information using Ground Truth Data

A. Kariryaa, Isaac L. Johnson, Johannes Schöning, Brent J. Hecht
{"title":"Defining and Predicting the Localness of Volunteered Geographic Information using Ground Truth Data","authors":"A. Kariryaa, Isaac L. Johnson, Johannes Schöning, Brent J. Hecht","doi":"10.1145/3173574.3173839","DOIUrl":null,"url":null,"abstract":"Many applications of geotagged content are predicated on the concept of localness (e.g., local restaurant recommendation, mining social media for local perspectives on an issue). However, definitions of who is a \"local\" in a given area are typically informal and ad-hoc and, as a result, approaches for localness assessment that have been used in the past have not been formally validated. In this paper, we begin the process of addressing these gaps in the literature. Specifically, we (1) formalize definitions of \"local\" using themes identified in a 30-paper literature review, (2) develop the first ground truth localness dataset consisting of 132 Twitter users and 58,945 place-tagged tweets, and (3) use this dataset to evaluate existing localness assessment approaches. Our results provide important methodological guidance to the large body of research and practice that depends on the concept of localness and suggest means by which localness assessment can be improved.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3173839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Many applications of geotagged content are predicated on the concept of localness (e.g., local restaurant recommendation, mining social media for local perspectives on an issue). However, definitions of who is a "local" in a given area are typically informal and ad-hoc and, as a result, approaches for localness assessment that have been used in the past have not been formally validated. In this paper, we begin the process of addressing these gaps in the literature. Specifically, we (1) formalize definitions of "local" using themes identified in a 30-paper literature review, (2) develop the first ground truth localness dataset consisting of 132 Twitter users and 58,945 place-tagged tweets, and (3) use this dataset to evaluate existing localness assessment approaches. Our results provide important methodological guidance to the large body of research and practice that depends on the concept of localness and suggest means by which localness assessment can be improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用地面真值数据定义和预测志愿地理信息的局域性
地理标记内容的许多应用都是基于本地性的概念(例如,本地餐馆推荐,挖掘社交媒体对某个问题的本地观点)。然而,关于谁是某一特定地区的“本地人”的定义通常是非正式和特别的,因此,过去使用的地方性评估方法尚未得到正式验证。在本文中,我们开始解决这些空白的文献过程。具体来说,我们(1)使用30篇文献综述中确定的主题形式化“本地”的定义,(2)开发了第一个由132个Twitter用户和58,945条位置标记推文组成的真实本地性数据集,(3)使用该数据集评估现有的本地性评估方法。我们的研究结果为依赖于局部性概念的大量研究和实践提供了重要的方法论指导,并提出了改进局部性评估的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scaling Classroom IT Skill Tutoring: A Case Study from India Convey: Exploring the Use of a Context View for Chatbots Make Yourself at Phone: Reimagining Mobile Interaction Architectures With Emergent Users Forte Conveying the Perception of Kinesthetic Feedback in Virtual Reality using State-of-the-Art Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1