Odd Mathieu Functions Application to Synthesize a Multi-element Radiator Flat-topped Radiation Pattern

Y. Rusov, A. Propastin
{"title":"Odd Mathieu Functions Application to Synthesize a Multi-element Radiator Flat-topped Radiation Pattern","authors":"Y. Rusov, A. Propastin","doi":"10.36027/rdeng.0321.0000194","DOIUrl":null,"url":null,"abstract":"The paper studies synthesizing capabilities of a flat-topped radiation pattern when using the expansion of the target radiation pattern into a series in terms of odd Mathieu functions. As parameters for comparing the target and synthesized radiation patterns, we used a main-lobe width at a level of -1 dB and an irregularity of the top of the main-lobe of the radiation pattern. The sector-shaped radiation pattern has been synthesized for linear radiators of various lengths. The convergence of the coefficients of the Mathieu series in the synthesis of the sector-shaped radiation pattern has been estimated. It is shown that the use of piecewise-linear approximation of the target radiation pattern in the synthesis using a series expansion into odd Mathieu functions allows us to improve the quality of the radiation pattern formed.The task that involved finding the amplitude-phase distribution for a linear emitter with a length of 3λ, 4λ and 5λ (λ is operation wavelength) for a target radiation pattern was solved. The target amplitude distribution has the following electrical characteristics: the main-lobe width is 37.5° at a level of -1 dB and the side lobe level (SLL) is -20 dB. The synthesis procedure was performed for two cases. In the first case, the target radiation pattern is represented by a piecewise constant function with a given width. In the second case, the target pattern was specified using piecewise linear approximation of the top and slopes of the main lobe.Comparison of the radiation patterns obtained shows that in the first case, the main-lobe width of the radiation pattern at a level of -1 dB is 34°, the SLL varies from -15.6 to -17 dB, and the irregularity of the main-lobe top of the radiation pattern lies within 0.9 ... 1.2 dB. In the second case, the main-lobe width of the antenna radiation pattern at a level of -1 dB is 36.5°, the SLL is -17.5 dB, and the irregularity of the main-lobe top is 0.4 dB at most. When used, the considered under consideration enables us to obtain both the synthesized patterns for linear radiators of various lengths, and the corresponding amplitude-phase distributions and coefficients of the Mathieu series. An estimate of the convergence of the Mathieu series shows that the use of linear approximation of the target radiation pattern in some cases allows up to 2.7-fold increase in acceleration of the convergence of the Mathieu series. The accuracy of reproducing the sector-shaped pattern by the synthesis method using the expansion into odd Mathieu functions gives good results when synthesizing the amplitude-phase distribution for the linear radiators with an electric length of 5λ or more.","PeriodicalId":22345,"journal":{"name":"Telecommunications and Radio Engineering","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunications and Radio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36027/rdeng.0321.0000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper studies synthesizing capabilities of a flat-topped radiation pattern when using the expansion of the target radiation pattern into a series in terms of odd Mathieu functions. As parameters for comparing the target and synthesized radiation patterns, we used a main-lobe width at a level of -1 dB and an irregularity of the top of the main-lobe of the radiation pattern. The sector-shaped radiation pattern has been synthesized for linear radiators of various lengths. The convergence of the coefficients of the Mathieu series in the synthesis of the sector-shaped radiation pattern has been estimated. It is shown that the use of piecewise-linear approximation of the target radiation pattern in the synthesis using a series expansion into odd Mathieu functions allows us to improve the quality of the radiation pattern formed.The task that involved finding the amplitude-phase distribution for a linear emitter with a length of 3λ, 4λ and 5λ (λ is operation wavelength) for a target radiation pattern was solved. The target amplitude distribution has the following electrical characteristics: the main-lobe width is 37.5° at a level of -1 dB and the side lobe level (SLL) is -20 dB. The synthesis procedure was performed for two cases. In the first case, the target radiation pattern is represented by a piecewise constant function with a given width. In the second case, the target pattern was specified using piecewise linear approximation of the top and slopes of the main lobe.Comparison of the radiation patterns obtained shows that in the first case, the main-lobe width of the radiation pattern at a level of -1 dB is 34°, the SLL varies from -15.6 to -17 dB, and the irregularity of the main-lobe top of the radiation pattern lies within 0.9 ... 1.2 dB. In the second case, the main-lobe width of the antenna radiation pattern at a level of -1 dB is 36.5°, the SLL is -17.5 dB, and the irregularity of the main-lobe top is 0.4 dB at most. When used, the considered under consideration enables us to obtain both the synthesized patterns for linear radiators of various lengths, and the corresponding amplitude-phase distributions and coefficients of the Mathieu series. An estimate of the convergence of the Mathieu series shows that the use of linear approximation of the target radiation pattern in some cases allows up to 2.7-fold increase in acceleration of the convergence of the Mathieu series. The accuracy of reproducing the sector-shaped pattern by the synthesis method using the expansion into odd Mathieu functions gives good results when synthesizing the amplitude-phase distribution for the linear radiators with an electric length of 5λ or more.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
奇Mathieu函数在多单元辐射体平顶辐射图合成中的应用
本文研究了将目标辐射方向图展开成奇马修函数级数时平顶辐射方向图的综合能力。作为比较目标和合成辐射图的参数,我们使用了-1 dB水平的主瓣宽度和辐射图主瓣顶部的不规则度。对不同长度的线性辐射体合成了扇形辐射图。估计了扇形辐射图合成中Mathieu级数系数的收敛性。结果表明,将目标辐射方向图的分段线性近似用级数展开成奇马蒂厄函数,可以提高所形成的辐射方向图的质量。求解了长度为3λ、4λ和5λ (λ为工作波长)的线性发射器的幅相分布问题。目标振幅分布具有以下电特性:主瓣宽度为37.5°,电平为-1 dB,副瓣电平(SLL)为-20 dB。对两种情况进行了合成。在第一种情况下,目标辐射方向图由具有给定宽度的分段常数函数表示。在第二种情况下,使用主瓣的顶部和斜率的分段线性逼近来指定目标图案。对比得到的辐射图可知,第一种情况下,-1 dB水平处的辐射图主瓣宽度为34°,SLL变化范围为-15.6 ~ -17 dB,辐射图主瓣顶部的不规则性在0.9 ~ 17 dB之间。1.2 dB。在第二种情况下,天线辐射方向图在-1 dB电平处的主瓣宽度为36.5°,SLL为-17.5 dB,主瓣顶部的不规则性最大为0.4 dB。当使用所考虑的时侯,我们既可以得到不同长度的线性辐射体的合成图,也可以得到相应的Mathieu级数的幅相分布和系数。对Mathieu级数收敛性的估计表明,在某些情况下,使用目标辐射方向图的线性近似可以使Mathieu级数的收敛速度提高2.7倍。对于电长大于等于5λ的线性辐射体,利用奇Mathieu函数展开法合成扇形图的精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Efficient Operation for Next Generation Massive MIMO Network INTELLIGENT AUTONOMOUS PARKING SYSTEM INTEGRATING RFID AND IOT FOR SMART CITIES A Hybrid Model using Genetic Algorithm for Energy Optimization in Heterogeneous Internet of Blockchain Things (IoBT) A NOVEL COMPACT TE-DGS UWB ANTENNA FOR WIRELESS COMMUNICATION APPLICATIONS GAUSS-NEWTON MULTILATERATION LOCALIZATION ALGORITHM IN LARGE-SCALE WIRELESS SENSOR NETWORKS FOR IoT APPLICATIONS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1