The emerging complexity of ubiquitin architecture

F. Ohtake, Hikaru Tsuchiya
{"title":"The emerging complexity of ubiquitin architecture","authors":"F. Ohtake, Hikaru Tsuchiya","doi":"10.1093/jb/mvw088","DOIUrl":null,"url":null,"abstract":"Ubiquitylation is an essential post-translational modification (PTM) of proteins with diverse cellular functions. Polyubiquitin chains with different topologies have different cellular roles, and are referred to as a 'ubiquitin code'. Recent studies have begun to reveal that more complex ubiquitin architectures function as important signals in several biological pathways. These include PTMs of ubiquitin itself, such as acetylated ubiquitin and phospho-ubiquitin. Moreover, important roles for heterogeneous polyubiquitin chains, such as mixed or branched chains, have been reported, which significantly increase the diversity of the ubiquitin code. In this review, we describe mass spectrometry-based methods to characterize the ubiquitin signal. We also describe recent advances in our understanding of complex ubiquitin architectures, including our own findings concerning ubiquitin acetylation and branching within polyubiquitin chains.","PeriodicalId":22605,"journal":{"name":"The Journal of Biochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jb/mvw088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

Ubiquitylation is an essential post-translational modification (PTM) of proteins with diverse cellular functions. Polyubiquitin chains with different topologies have different cellular roles, and are referred to as a 'ubiquitin code'. Recent studies have begun to reveal that more complex ubiquitin architectures function as important signals in several biological pathways. These include PTMs of ubiquitin itself, such as acetylated ubiquitin and phospho-ubiquitin. Moreover, important roles for heterogeneous polyubiquitin chains, such as mixed or branched chains, have been reported, which significantly increase the diversity of the ubiquitin code. In this review, we describe mass spectrometry-based methods to characterize the ubiquitin signal. We also describe recent advances in our understanding of complex ubiquitin architectures, including our own findings concerning ubiquitin acetylation and branching within polyubiquitin chains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泛素结构的新兴复杂性
泛素化是具有多种细胞功能的蛋白质的重要翻译后修饰(PTM)。具有不同拓扑结构的多泛素链具有不同的细胞作用,被称为“泛素代码”。最近的研究已经开始揭示更复杂的泛素结构在几种生物学途径中起着重要的信号作用。这些包括泛素本身的PTMs,如乙酰化泛素和磷酸化泛素。此外,异质多泛素链(如混合链或支链)的重要作用已被报道,它们显著增加了泛素代码的多样性。在这篇综述中,我们描述了基于质谱的方法来表征泛素信号。我们还描述了我们对复杂泛素结构的理解的最新进展,包括我们自己关于泛素乙酰化和多泛素链分支的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New insights into the regulation and roles of phosphatidylinositol 3,4-bisphosphate The NRF2 inducer CDDO-2P-Im provokes a reduction in amyloid β levels in Alzheimer’s disease model mice Cancer-associated SF3B1 Mutations Inhibit mRNA Nuclear Export by Disrupting SF3B1–THOC5 Interactions Mtc6/Ehg2 is a novel endoplasmic reticulum-resident glycoprotein essential for high-pressure tolerance Evaluation of the cyclic single-chain Fv antibody derived from nivolumab by biophysical analyses and in vitro cell-based bioassay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1