Blood cell detection and counting in holographic lens-free imaging by convolutional sparse dictionary learning and coding

F. Yellin, B. Haeffele, R. Vidal
{"title":"Blood cell detection and counting in holographic lens-free imaging by convolutional sparse dictionary learning and coding","authors":"F. Yellin, B. Haeffele, R. Vidal","doi":"10.1109/ISBI.2017.7950604","DOIUrl":null,"url":null,"abstract":"We propose a convolutional sparse dictionary learning and coding approach for detecting and counting instances of a repeated object in a holographic lens-free image. The proposed approach exploits the fact that an image containing a single object instance can be approximated as the convolution of a (small) object template with a spike at the location of the object instance. Therefore, an image containing multiple non-overlapping instances of an object can be approximated as the sum of convolutions of templates with spikes. Given one or more images, one can learn a dictionary of templates using a convolutional extension of the K-SVD algorithm for sparse dictionary learning. Given a set of templates, one can efficiently detect object instances in a new image using a convolutional extension of the matching pursuit algorithm for sparse coding. Experiments on red blood cell (RBC) and white blood cell (WBC) detection and counting demonstrate that the proposed method produces promising results without requiring additional post-processing.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"20 1","pages":"650-653"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We propose a convolutional sparse dictionary learning and coding approach for detecting and counting instances of a repeated object in a holographic lens-free image. The proposed approach exploits the fact that an image containing a single object instance can be approximated as the convolution of a (small) object template with a spike at the location of the object instance. Therefore, an image containing multiple non-overlapping instances of an object can be approximated as the sum of convolutions of templates with spikes. Given one or more images, one can learn a dictionary of templates using a convolutional extension of the K-SVD algorithm for sparse dictionary learning. Given a set of templates, one can efficiently detect object instances in a new image using a convolutional extension of the matching pursuit algorithm for sparse coding. Experiments on red blood cell (RBC) and white blood cell (WBC) detection and counting demonstrate that the proposed method produces promising results without requiring additional post-processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积稀疏字典学习与编码的全息无透镜成像中血细胞检测与计数
我们提出了一种卷积稀疏字典学习和编码方法,用于检测和计数全息无透镜图像中重复物体的实例。所提出的方法利用了这样一个事实,即包含单个对象实例的图像可以近似为(小)对象模板与对象实例位置处的尖峰的卷积。因此,包含多个对象的非重叠实例的图像可以近似为带有尖峰的模板的卷积之和。给定一个或多个图像,可以使用用于稀疏字典学习的K-SVD算法的卷积扩展来学习模板字典。给定一组模板,使用稀疏编码匹配追踪算法的卷积扩展,可以有效地检测新图像中的对象实例。红细胞(RBC)和白细胞(WBC)的检测和计数实验表明,该方法无需额外的后处理就能产生令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1