Junyoung Mun, Habeeb Tajudeen, Abdolreza Hosseindoust, Sanghun Ha, Serin Park, Jinsoo Kim
{"title":"A reduction in dietary crude protein with amino acid balance has no negative effects in pigs.","authors":"Junyoung Mun, Habeeb Tajudeen, Abdolreza Hosseindoust, Sanghun Ha, Serin Park, Jinsoo Kim","doi":"10.5187/jast.2023.e64","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this experiment was to evaluate the effects of low crude protein (CP) level with essential amino acids (AA) addition on growth performance, nutrient digestibility, microbiota, and volatile fatty acid composition in growing pigs. A total of 160 growing pigs (Landrace × Yorkshire × Duroc [LYD]; average initial body weight 16.68 ± 0.12 kg) were randomly allotted to one of the four treatments on the basis of initial body weight. A randomized complete block design was used to conduct this experiment in the Research Center of Animal Life Sciences at Kangwon National University. There were ten pigs/replicate with four replicates in each treatment. The treatments include; CON (Control, 17.2% dietary CP level), low protein (LP)-1.10 (15.7% dietary CP level + 1.10% lysine level), LP-1.15 (15.7% dietary CP level + 1.15% lysine level), LP1.2 (15.7% dietary CP level + 1.20% lysine level). The pigs fed CON and LP-1.2 diet showed greater final body weight than that of LP-1.1 diet (<i>p</i> < 0.05). Although average daily gain, average daily feed intake, and feed efficiency did not show any difference in phase 2 and 3, average daily gain and feed efficiency was significantly greater in CON and LP-1.20 in phase 1. However, the average daily feed intake did not show any difference during the experimental period. Isobutyric acid and isovaleric acid composition of LP treatments were lower than CON treatment in phase 2. Total branched chain fatty acid composition was significantly lower in LP treatment in phases 1 and 2. However, there was no significant difference among treatments in phase 3. The results of this study underscore the importance of AA supplementation when implementing a low-protein diet during the early growth phase (16-50 kg) in pigs.</p>","PeriodicalId":14923,"journal":{"name":"Journal of Animal Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5187/jast.2023.e64","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this experiment was to evaluate the effects of low crude protein (CP) level with essential amino acids (AA) addition on growth performance, nutrient digestibility, microbiota, and volatile fatty acid composition in growing pigs. A total of 160 growing pigs (Landrace × Yorkshire × Duroc [LYD]; average initial body weight 16.68 ± 0.12 kg) were randomly allotted to one of the four treatments on the basis of initial body weight. A randomized complete block design was used to conduct this experiment in the Research Center of Animal Life Sciences at Kangwon National University. There were ten pigs/replicate with four replicates in each treatment. The treatments include; CON (Control, 17.2% dietary CP level), low protein (LP)-1.10 (15.7% dietary CP level + 1.10% lysine level), LP-1.15 (15.7% dietary CP level + 1.15% lysine level), LP1.2 (15.7% dietary CP level + 1.20% lysine level). The pigs fed CON and LP-1.2 diet showed greater final body weight than that of LP-1.1 diet (p < 0.05). Although average daily gain, average daily feed intake, and feed efficiency did not show any difference in phase 2 and 3, average daily gain and feed efficiency was significantly greater in CON and LP-1.20 in phase 1. However, the average daily feed intake did not show any difference during the experimental period. Isobutyric acid and isovaleric acid composition of LP treatments were lower than CON treatment in phase 2. Total branched chain fatty acid composition was significantly lower in LP treatment in phases 1 and 2. However, there was no significant difference among treatments in phase 3. The results of this study underscore the importance of AA supplementation when implementing a low-protein diet during the early growth phase (16-50 kg) in pigs.
期刊介绍:
Journal of Animal Science and Technology (J. Anim. Sci. Technol. or JAST) is a peer-reviewed, open access journal publishing original research, review articles and notes in all fields of animal science.
Topics covered by the journal include: genetics and breeding, physiology, nutrition of monogastric animals, nutrition of ruminants, animal products (milk, meat, eggs and their by-products) and their processing, grasslands and roughages, livestock environment, animal biotechnology, animal behavior and welfare.
Articles generally report research involving beef cattle, dairy cattle, pigs, companion animals, goats, horses, and sheep. However, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will also be considered for publication.
The Journal of Animal Science and Technology (J. Anim. Technol. or JAST) has been the official journal of The Korean Society of Animal Science and Technology (KSAST) since 2000, formerly known as The Korean Journal of Animal Sciences (launched in 1956).