Approximate Fixed-Point Elementary Function Accelerator for the SpiNNaker-2 Neuromorphic Chip

M. Mikaitis, D. Lester, D. Shang, S. Furber, Gengting Liu, J. Garside, Stefan Scholze, S. Höppner, Andreas Dixius
{"title":"Approximate Fixed-Point Elementary Function Accelerator for the SpiNNaker-2 Neuromorphic Chip","authors":"M. Mikaitis, D. Lester, D. Shang, S. Furber, Gengting Liu, J. Garside, Stefan Scholze, S. Höppner, Andreas Dixius","doi":"10.1109/ARITH.2018.8464785","DOIUrl":null,"url":null,"abstract":"Neuromorphic chips are used to model biologically inspired Spiking-Neural-Networks(SNNs) where most models are based on differential equations. Equations for most SNN algorithms usually contain variables with one or more $e^{x}$ components. SpiNNaker is a digital neuromorphic chip that has so far been using pre-calculated look-up tables for exponential function. However this approach is limited because the memory requirements grow as more complex neural models are developed. To save already limited memory resources in the next generation SpiNNaker chip, we are including a fast exponential function in the silicon. In this paper we analyse iterative algorithms for elementary functions and show how to build a single hardware accelerator for exp and natural log, for a neuromorphic chip prototype, to be manufactured in a 22 nm FDSOI process. We present the accelerator that has algorithmic level approximation control, allowing it to trade precision for latency and energy efficiency. As an addition to neuromorphic chip application, we provide analysis of a parameterized elementary function unit that can be tailored for other systems with different power, area, accuracy and latency constraints.","PeriodicalId":6576,"journal":{"name":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","volume":"16 1","pages":"37-44"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2018.8464785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Neuromorphic chips are used to model biologically inspired Spiking-Neural-Networks(SNNs) where most models are based on differential equations. Equations for most SNN algorithms usually contain variables with one or more $e^{x}$ components. SpiNNaker is a digital neuromorphic chip that has so far been using pre-calculated look-up tables for exponential function. However this approach is limited because the memory requirements grow as more complex neural models are developed. To save already limited memory resources in the next generation SpiNNaker chip, we are including a fast exponential function in the silicon. In this paper we analyse iterative algorithms for elementary functions and show how to build a single hardware accelerator for exp and natural log, for a neuromorphic chip prototype, to be manufactured in a 22 nm FDSOI process. We present the accelerator that has algorithmic level approximation control, allowing it to trade precision for latency and energy efficiency. As an addition to neuromorphic chip application, we provide analysis of a parameterized elementary function unit that can be tailored for other systems with different power, area, accuracy and latency constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpiNNaker-2神经形态芯片的近似定点初等函数加速器
神经形态芯片用于模拟受生物学启发的脉冲神经网络(snn),其中大多数模型都基于微分方程。大多数SNN算法的方程通常包含一个或多个$e^{x}$分量的变量。SpiNNaker是一种数字神经形态芯片,迄今为止一直使用预先计算的指数函数查找表。然而,这种方法是有限的,因为随着更复杂的神经模型的发展,记忆需求也在增长。为了在下一代SpiNNaker芯片中节省已经有限的内存资源,我们在硅中加入了一个快速指数函数。在本文中,我们分析了初等函数的迭代算法,并展示了如何构建一个用于exp和自然对数的单一硬件加速器,用于神经形态芯片原型,将在22 nm FDSOI工艺中制造。我们提出了具有算法级近似控制的加速器,允许它以精度换取延迟和能量效率。作为神经形态芯片应用的补充,我们提供了一个参数化的基本功能单元的分析,可以为具有不同功率,面积,精度和延迟限制的其他系统量身定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Density and Performance Multiplication for FPGA On Various Ways to Split a Floating-Point Number Flexpoint: Predictive Numerics for Deep Learning Augmented Arithmetic Operations Proposed for IEEE-754 2018 A New Variant of the Barrett Algorithm Applied to Quotient Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1