Ebele Joy Morah, V. Ajiwe, P. C. Okonkwo, Blessing Chidimma Ikezuagu, N. C. Eboagu, O. J. Anekwe
{"title":"Elemental Analysis of Soil and Effluent Samples Sourced from Hermas Paint Industry, Enugwu-Ukwu","authors":"Ebele Joy Morah, V. Ajiwe, P. C. Okonkwo, Blessing Chidimma Ikezuagu, N. C. Eboagu, O. J. Anekwe","doi":"10.11648/j.ajac.20210902.12","DOIUrl":null,"url":null,"abstract":"Industrial pollution by effluents is one of the major problems facing Nigerians at present and several efforts are being vigorously engaged to control it in the various industry spanning the length and breadth of the country to see that Nigerians live in a disease-free environment. Some heavy metals contained in these effluents from the industry have been found to be carcinogenic, toxic or poisonous to the environment (plants, animals and humans). This research paper investigates the heavy metal content of the effluent and soil samples in order to determine the level of toxicity and pollution by the metals to the environment. The elemental analysis of soil and effluent samples were conducted. The soil samples were sourced 2-metres distance away from the discharge point of the effluent. The soil samples were digested using aqua regia for the elemental analysis for the detection of ten different metals (lead, arsenic, cadmium, chromium, calcium, zinc, sodium, mercury, iron and cobalt) using atomic absorption spectrophotometer. The values of the mean concentrations of the elements Pb, As, Cd, Cr, Ca, Zn, Na, Hg, Fe and Co in both the soil and effluent samples showed excessive levels above the recommended standards for WHO and NESREA with the exception of Na, Ca and Zn. This indicates that the effluent was discharged without proper treatment. It is therefore recommended that adequate monitoring should be done through aggressive supervision on effluent treatment before discharge. Local raw materials such as activated carbon, coal, rice husk, saw dust and clay should be employed in the treatment of the effluent as they are readily available and cost- saving.","PeriodicalId":7605,"journal":{"name":"American Journal of Applied Chemistry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajac.20210902.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial pollution by effluents is one of the major problems facing Nigerians at present and several efforts are being vigorously engaged to control it in the various industry spanning the length and breadth of the country to see that Nigerians live in a disease-free environment. Some heavy metals contained in these effluents from the industry have been found to be carcinogenic, toxic or poisonous to the environment (plants, animals and humans). This research paper investigates the heavy metal content of the effluent and soil samples in order to determine the level of toxicity and pollution by the metals to the environment. The elemental analysis of soil and effluent samples were conducted. The soil samples were sourced 2-metres distance away from the discharge point of the effluent. The soil samples were digested using aqua regia for the elemental analysis for the detection of ten different metals (lead, arsenic, cadmium, chromium, calcium, zinc, sodium, mercury, iron and cobalt) using atomic absorption spectrophotometer. The values of the mean concentrations of the elements Pb, As, Cd, Cr, Ca, Zn, Na, Hg, Fe and Co in both the soil and effluent samples showed excessive levels above the recommended standards for WHO and NESREA with the exception of Na, Ca and Zn. This indicates that the effluent was discharged without proper treatment. It is therefore recommended that adequate monitoring should be done through aggressive supervision on effluent treatment before discharge. Local raw materials such as activated carbon, coal, rice husk, saw dust and clay should be employed in the treatment of the effluent as they are readily available and cost- saving.