Design and Implementation of an Advanced Vehicle-to-Vehicle (V2V) Power Transfer Operation Using Communications

S. Taghizadeh, P. Jamborsalamati, Md. Jahangir Hossain, Junwei Lu
{"title":"Design and Implementation of an Advanced Vehicle-to-Vehicle (V2V) Power Transfer Operation Using Communications","authors":"S. Taghizadeh, P. Jamborsalamati, Md. Jahangir Hossain, Junwei Lu","doi":"10.1109/EEEIC.2018.8494480","DOIUrl":null,"url":null,"abstract":"Electric vehicles with excess energy in their battery can transfer to other vehicles during their daily trips. This paper proposes a design and implementation of an advanced vehicle-vehicle (V2V) operation, which is used to transfer energy between two electric-vehicle (EV) on-board chargers. EV owners can trade their vehicles' stored energy using this V2V operation without affecting the operation of the grid. The proposed V2V operation, which is less focused in the literature, needs to be considered in the design of each individual EV charger. An internet-of-things (IoT) platform based on the message queue telemetry transport (MQTT) protocol is also designed and implemented to govern interactions between EV owners and among EV chargers.","PeriodicalId":6563,"journal":{"name":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"43 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2018.8494480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Electric vehicles with excess energy in their battery can transfer to other vehicles during their daily trips. This paper proposes a design and implementation of an advanced vehicle-vehicle (V2V) operation, which is used to transfer energy between two electric-vehicle (EV) on-board chargers. EV owners can trade their vehicles' stored energy using this V2V operation without affecting the operation of the grid. The proposed V2V operation, which is less focused in the literature, needs to be considered in the design of each individual EV charger. An internet-of-things (IoT) platform based on the message queue telemetry transport (MQTT) protocol is also designed and implemented to govern interactions between EV owners and among EV chargers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于通信的先进车对车(V2V)电力传输操作的设计与实现
电池中有多余能量的电动汽车可以在日常行驶中转移给其他车辆。本文提出了一种先进的车-车(V2V)操作的设计和实现,该操作用于在两个电动汽车(EV)车载充电器之间传递能量。电动汽车车主可以在不影响电网运行的情况下,使用这种V2V操作来交易汽车储存的能量。所提出的V2V操作,在文献中较少关注,需要在每个单独的电动汽车充电器的设计中考虑。还设计并实现了基于消息队列遥测传输(MQTT)协议的物联网(IoT)平台,以管理电动汽车车主之间和电动汽车充电器之间的交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future State Visualization in Power Grid Configurations of Modified SEPIC Converter with Switched Inductor Module (MSCsI) for Photovoltaic Application: Part-II Innovative Hybrid Energy Systems for Heading Towards NZEB Qualification for Existing Buildings Potential Use of Reservoirs for Mitigating Saline Intrusion in the Coastal Areas of Red River Delta Radiated Wideband IEMI: Coupling Model and Worst-Case Analysis for Smart Grid Wiring Harness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1