{"title":"Numerical Simulations of Time-Resolved Photoluminescence in CdSexTe1-x/CdTe Solar Cells","authors":"J. Moseley, D. Krasikov, D. Kuciauskas","doi":"10.1109/PVSC45281.2020.9300736","DOIUrl":null,"url":null,"abstract":"We present initial time-resolved photoluminescence (TRPL) simulations in graded CdSexTe1-e thin-film solar cells to quantify the front-interface recombination velocity, Sint,front. Our model includes several composition dependences: bandgap energy, absorption coefficient, electron affinity, and carrier lifetime. Cathodoluminescence spectrum imaging measurements on bevels provide an estimate of the bandgap and the CdSexTe1-x alloy composition through the absorber thickness. TRPL decays are simulated as a function of the laser power, Sint,front, front-interface band offset, and bulk Shockley-Read-Hall lifetime. We find the impact of Sintf,ront on the PL decay increases as the band offset shifts from a “spike” to a “cliff”. Recombination rate analysis shows that back-interface recombination could potentially dictate the later part of the TRPL decay “τ2” in high-lifetime CdSexTe1-x cells. We briefly discuss ongoing work to determine TRPL measurement conditions that maximize sensitivity to Sitnt,front.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"13 1","pages":"2062-2065"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present initial time-resolved photoluminescence (TRPL) simulations in graded CdSexTe1-e thin-film solar cells to quantify the front-interface recombination velocity, Sint,front. Our model includes several composition dependences: bandgap energy, absorption coefficient, electron affinity, and carrier lifetime. Cathodoluminescence spectrum imaging measurements on bevels provide an estimate of the bandgap and the CdSexTe1-x alloy composition through the absorber thickness. TRPL decays are simulated as a function of the laser power, Sint,front, front-interface band offset, and bulk Shockley-Read-Hall lifetime. We find the impact of Sintf,ront on the PL decay increases as the band offset shifts from a “spike” to a “cliff”. Recombination rate analysis shows that back-interface recombination could potentially dictate the later part of the TRPL decay “τ2” in high-lifetime CdSexTe1-x cells. We briefly discuss ongoing work to determine TRPL measurement conditions that maximize sensitivity to Sitnt,front.