Multi-scale convolution based breast cancer image segmentation with attention mechanism in conjunction with war search optimization

B. N. Madhukar, S. Bharathi, A. Polnaya
{"title":"Multi-scale convolution based breast cancer image segmentation with attention mechanism in conjunction with war search optimization","authors":"B. N. Madhukar, S. Bharathi, A. Polnaya","doi":"10.1080/1206212X.2023.2212945","DOIUrl":null,"url":null,"abstract":"Numerous studies have explored different techniques for segmenting breast cancer images, in particular deep learning-based Computer-Aided Diagnosis (CAD) has recently netted attention. However, due to their down-and-out pursuance, the existing approaches like FCN (Fully Convolutional Network), PSPNet (Pyramid Scene Parsing Network), U-Net, and SegNet still required improvement for offering better semantic segmentation while identifying breast cancer. In this paper, the newly proposed breast cancer tumor segmentation method consists of four steps pre-processing, augmentation, segmenting image using multi-scale convolution and multi- attention mechanisms respectively. The proposed method utilizes the ResNet (Residual Network) backbone network with multi-scale convolution for feature map prediction. Also, the effectiveness of the multi-channel attention module with a pyramid dilated nodule is employed for semantic segmentation. Gated axial, position, and channel attention are combined to create a multi-channel attention mechanism. Additionally, War Search Optimization (WSO) algorithm is being utilized to enhance the accuracy of the segmented images. Experimentations are conducted on two datasets, viz., Breast Cancer Cell Segmentation Database and Breast Cancer Semantic Segmentation (BCSS) Database, with different existing networks. The effectiveness of the network is evaluated based on various criteria in terms of precision, accuracy, recall, (mean Intersection of Union), (Intersection of Union), etc.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"40 1","pages":"353 - 366"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2212945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Numerous studies have explored different techniques for segmenting breast cancer images, in particular deep learning-based Computer-Aided Diagnosis (CAD) has recently netted attention. However, due to their down-and-out pursuance, the existing approaches like FCN (Fully Convolutional Network), PSPNet (Pyramid Scene Parsing Network), U-Net, and SegNet still required improvement for offering better semantic segmentation while identifying breast cancer. In this paper, the newly proposed breast cancer tumor segmentation method consists of four steps pre-processing, augmentation, segmenting image using multi-scale convolution and multi- attention mechanisms respectively. The proposed method utilizes the ResNet (Residual Network) backbone network with multi-scale convolution for feature map prediction. Also, the effectiveness of the multi-channel attention module with a pyramid dilated nodule is employed for semantic segmentation. Gated axial, position, and channel attention are combined to create a multi-channel attention mechanism. Additionally, War Search Optimization (WSO) algorithm is being utilized to enhance the accuracy of the segmented images. Experimentations are conducted on two datasets, viz., Breast Cancer Cell Segmentation Database and Breast Cancer Semantic Segmentation (BCSS) Database, with different existing networks. The effectiveness of the network is evaluated based on various criteria in terms of precision, accuracy, recall, (mean Intersection of Union), (Intersection of Union), etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度卷积的关注机制与战争搜索优化的乳腺癌图像分割
许多研究探索了不同的乳腺癌图像分割技术,特别是基于深度学习的计算机辅助诊断(CAD)最近引起了人们的关注。然而,现有的FCN (Fully Convolutional Network)、PSPNet (Pyramid Scene Parsing Network)、U-Net和SegNet等方法由于其追求的不确定性,在识别乳腺癌的同时,还需要改进以提供更好的语义分割。本文提出的乳腺癌肿瘤分割方法包括预处理、增强、多尺度卷积分割和多关注分割四个步骤。该方法利用多尺度卷积的ResNet (Residual Network)骨干网进行特征映射预测。同时,利用多通道注意力模块金字塔型扩张结节的有效性进行语义分割。门控轴,位置和通道的注意相结合,以创建一个多通道的注意机制。此外,还利用战争搜索优化(WSO)算法来提高分割图像的准确性。在现有网络不同的情况下,在乳腺癌细胞分割数据库和乳腺癌语义分割数据库两个数据集上进行实验。网络的有效性是基于精度、准确度、召回率、(平均交集)、(交集)等各种标准来评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computers and Applications
International Journal of Computers and Applications Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.70
自引率
0.00%
发文量
20
期刊介绍: The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.
期刊最新文献
Weight assignment in cloud service selection based on FAHP and rough sets The social force model: a behavioral modeling approach for information propagation during significant events A comprehensive study on social networks analysis and mining to detect opinion leaders A machine learning approach for skin lesion classification on iOS: implementing and optimizing a convolutional transfer learning model with Create ML Physical-layer security for primary users in 5G underlay cognitive radio system via artificial-noise-aided by secondary users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1