Modelling the throttle effect in a mine drift

IF 0.7 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Journal of Sustainable Mining Pub Date : 2022-01-01 DOI:10.46873/2300-3960.1329
R. Hansen
{"title":"Modelling the throttle effect in a mine drift","authors":"R. Hansen","doi":"10.46873/2300-3960.1329","DOIUrl":null,"url":null,"abstract":"The throttle effect is a phenomenon, which may occur during a fire underground, causing unforeseen smoke spread. This paper focuses on the modelling of the throttle effect in a mine drift, using a CFD software. The aim of the paper is to investigate whether the CFD tool is able to predict and reproduce the throttle effect for fire scenarios underground. Experimental data from fire experiments in a model-scale mine drift and modelling results from a CFD model were used during the analysis. It was found that the CFD model was not able to fully reproduce the throttle effect for fire scenarios in a mine drift. The inability was due to the under prediction of the fire gas temperature at the ceiling level and the over prediction of the temperatures at the lower levels. The difficulties occurred foremost during transient periods with high fire growth rates. Given the difficulties in modelling the thermal stratification and the throttle effect, the use of CFD models should be mainly for qualitative analysis. Quantitative analysis could possibly be performed for non-transient and low intensity fires.","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46873/2300-3960.1329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The throttle effect is a phenomenon, which may occur during a fire underground, causing unforeseen smoke spread. This paper focuses on the modelling of the throttle effect in a mine drift, using a CFD software. The aim of the paper is to investigate whether the CFD tool is able to predict and reproduce the throttle effect for fire scenarios underground. Experimental data from fire experiments in a model-scale mine drift and modelling results from a CFD model were used during the analysis. It was found that the CFD model was not able to fully reproduce the throttle effect for fire scenarios in a mine drift. The inability was due to the under prediction of the fire gas temperature at the ceiling level and the over prediction of the temperatures at the lower levels. The difficulties occurred foremost during transient periods with high fire growth rates. Given the difficulties in modelling the thermal stratification and the throttle effect, the use of CFD models should be mainly for qualitative analysis. Quantitative analysis could possibly be performed for non-transient and low intensity fires.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矿井巷道中节流效应的模拟
节流效应是一种现象,它可能发生在地下火灾中,导致无法预料的烟雾蔓延。本文主要利用CFD软件对矿井巷道中的节流效应进行建模。本文的目的是研究CFD工具是否能够预测和再现地下火灾场景下的节流效应。采用模型尺度矿井巷道火灾试验数据和CFD模型模拟结果进行分析。结果表明,CFD模型不能完全再现矿井巷道火灾情景下的节流效应。这主要是由于对顶板温度的预测不足,而对下层温度的预测过高。困难主要发生在火生长速率高的过渡时期。考虑到热分层和节流效应建模的困难,CFD模型的使用应主要用于定性分析。可以对非瞬态和低强度火灾进行定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sustainable Mining
Journal of Sustainable Mining Earth and Planetary Sciences-Geology
CiteScore
1.50
自引率
10.00%
发文量
20
审稿时长
16 weeks
期刊最新文献
Influence of the moisture on fumes derived from the ANFO detonation Modified method for assessing the required expenditures and estimated time of hard coal mine liquidation Study on law and influencing factors of air leakage in isolated island working face with large burial depth Tracking mining company electric vehicles for sustainable development optimization using Distributed Ledger Technologies Prototype device for measuring the dustiness of stone and lime dust used in explosion prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1