Adaptive likelihood codebook reordering vector quantization for 1-D data sources

Chu Meh Chu, Nathan V. Parrish, David V. Anderson
{"title":"Adaptive likelihood codebook reordering vector quantization for 1-D data sources","authors":"Chu Meh Chu, Nathan V. Parrish, David V. Anderson","doi":"10.1109/DSP-SPE.2015.7369536","DOIUrl":null,"url":null,"abstract":"This paper outlines an adaptive extension of likelihood codebook reordering (LCR) vector quantization. By providing a method for allowing the vector quantization to adapt in a predetermined way, the codebook may be adaptively reordered to allow more efficient encoding by giving preference to encountered vectors in the dictionary. In particular, adaptation allows the trained dictionaries to be more efficient in representing specific data. The difference in the training and testing sets produces different transition matrices which are used to encode testing vectors. The adaptive likelihood codebook reordering vector quantization adapts the a priori transition matrix obtained from training data set to the testing data set on an online instantaneous basis. This method yields improvements in coding rate when entropy coding is applied to the reordered indices obtained from the adaptive version of the LCR algorithm.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"10 1","pages":"107-112"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper outlines an adaptive extension of likelihood codebook reordering (LCR) vector quantization. By providing a method for allowing the vector quantization to adapt in a predetermined way, the codebook may be adaptively reordered to allow more efficient encoding by giving preference to encountered vectors in the dictionary. In particular, adaptation allows the trained dictionaries to be more efficient in representing specific data. The difference in the training and testing sets produces different transition matrices which are used to encode testing vectors. The adaptive likelihood codebook reordering vector quantization adapts the a priori transition matrix obtained from training data set to the testing data set on an online instantaneous basis. This method yields improvements in coding rate when entropy coding is applied to the reordered indices obtained from the adaptive version of the LCR algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维数据源的自适应似然码本重排序矢量量化
提出了一种自适应扩展的似然码本重排序矢量量化方法。通过提供一种允许矢量量化以预先确定的方式进行调整的方法,码本可以自适应地重新排序,以便通过优先考虑字典中遇到的矢量来实现更有效的编码。特别是,自适应允许经过训练的字典在表示特定数据时更有效。训练集和测试集的差异产生了不同的转换矩阵,用于编码测试向量。自适应似然码本重排序矢量量化将训练数据集获得的先验转移矩阵在线瞬时地适应于测试数据集。该方法对自适应LCR算法得到的重排序索引进行熵编码,提高了编码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS. A new method for determination of instantaneous pitch frequency from speech signals Wideband-FM demodulation for large wideband to narrowband conversion factors via multirate frequency transformations A practical strategy for spectral library partitioning and least-squares identification Question Review Model for Q&A systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1