Polynomial modeling for manufacturing processes using a backward elimination based genetic programming

Kit Yan Chan, T. Dillon, Che Kit Kwong
{"title":"Polynomial modeling for manufacturing processes using a backward elimination based genetic programming","authors":"Kit Yan Chan, T. Dillon, Che Kit Kwong","doi":"10.1109/CEC.2010.5586309","DOIUrl":null,"url":null,"abstract":"Even if genetic programming (GP) has rich literature in development of polynomial models for manufacturing processes, the polynomial models may contain redundant terms which may cause the overfitted models. In other words, those models have good accuracy on training data sets but poor accuracy on untrained data sets. In this paper, a mechanism which aims at avoiding overfitting is proposed based on a statistical method, backward elimination, which intends to eliminate insignificant terms in polynomial models. By modeling a solder paste dispenser for electronic manufacturing, results show that the insignificant terms in the polynomial model can be eliminated by the proposed mechanism. Results also show that the polynomial model generated by the proposed GP can achieve better predictions than the existing methods.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"16 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Even if genetic programming (GP) has rich literature in development of polynomial models for manufacturing processes, the polynomial models may contain redundant terms which may cause the overfitted models. In other words, those models have good accuracy on training data sets but poor accuracy on untrained data sets. In this paper, a mechanism which aims at avoiding overfitting is proposed based on a statistical method, backward elimination, which intends to eliminate insignificant terms in polynomial models. By modeling a solder paste dispenser for electronic manufacturing, results show that the insignificant terms in the polynomial model can be eliminated by the proposed mechanism. Results also show that the polynomial model generated by the proposed GP can achieve better predictions than the existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反向消去的遗传规划制造过程的多项式建模
尽管遗传规划在制造过程多项式模型的开发方面有着丰富的文献,但多项式模型中可能包含冗余项,从而导致模型过拟合。换句话说,这些模型在训练数据集上具有良好的准确性,但在未经训练的数据集上具有较差的准确性。本文提出了一种避免过拟合的机制,该机制基于一种统计方法,即反向消去,旨在消除多项式模型中的不重要项。通过对电子制造用焊锡膏点焊机进行建模,结果表明该机制可以消除多项式模型中不重要的项。结果还表明,所提出的GP生成的多项式模型比现有方法具有更好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1