COVID-19, Russia-Ukraine war and interconnectedness between stock and crypto markets: a wavelet-based analysis

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Business Analytics Pub Date : 2023-03-26 DOI:10.1080/2573234X.2023.2193224
Wajdi Frikha, M. Brahim, A. Jeribi, Amine Lahiani
{"title":"COVID-19, Russia-Ukraine war and interconnectedness between stock and crypto markets: a wavelet-based analysis","authors":"Wajdi Frikha, M. Brahim, A. Jeribi, Amine Lahiani","doi":"10.1080/2573234X.2023.2193224","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper aims to investigate the impacts of the COVID-19 pandemic and Russia-Ukraine war on the interconnectedness between the US and China stock markets, major cryptocurrency and commodity markets using the wavelet coherence approach over the period from January 1 2016 to April 18 2022. The aim is to understand how the COVID-19 pandemic and the Russia-Ukraine war have affected the hedging efficiency of volatile crypto-currencies and gold. Wavelet coherency analysis unveils perceptual differences between the short-term and longer-term market reactions. In the short-run, we find strong co-movements during the first and second waves of the pandemic. During the first wave, longer-term investors were driven by the belief of future pandemic demise. They make use of time diversification that results in positive returns. During the Russia-Ukraine war, S&P 500 leads Bitcoin, BNB, and Ripple whereas Ethereum leads S&P 500 and SSE.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"15 1","pages":"255 - 275"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2023.2193224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT This paper aims to investigate the impacts of the COVID-19 pandemic and Russia-Ukraine war on the interconnectedness between the US and China stock markets, major cryptocurrency and commodity markets using the wavelet coherence approach over the period from January 1 2016 to April 18 2022. The aim is to understand how the COVID-19 pandemic and the Russia-Ukraine war have affected the hedging efficiency of volatile crypto-currencies and gold. Wavelet coherency analysis unveils perceptual differences between the short-term and longer-term market reactions. In the short-run, we find strong co-movements during the first and second waves of the pandemic. During the first wave, longer-term investors were driven by the belief of future pandemic demise. They make use of time diversification that results in positive returns. During the Russia-Ukraine war, S&P 500 leads Bitcoin, BNB, and Ripple whereas Ethereum leads S&P 500 and SSE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2019冠状病毒病、俄乌战争以及股票和加密市场之间的相互联系:基于小波的分析
本文旨在利用小波相干性方法研究2016年1月1日至2022年4月18日期间,COVID-19大流行和俄罗斯-乌克兰战争对美国和中国股票市场、主要加密货币和大宗商品市场互联性的影响。其目的是了解COVID-19大流行和俄罗斯-乌克兰战争如何影响波动性加密货币和黄金的对冲效率。小波相干性分析揭示了短期和长期市场反应之间的感知差异。在短期内,我们发现在大流行的第一波和第二波期间出现了强劲的协同运动。在第一波浪潮中,长期投资者受到未来大流行消亡的信念的推动。他们利用时间分散带来正回报。在俄罗斯-乌克兰战争期间,标准普尔500指数领先比特币,BNB和Ripple,而以太坊领先标准普尔500指数和SSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
期刊最新文献
Exploring the relationship between YouTube video optimisation practices and video rankings for online marketing: a machine learning approach The era of business analytics: identifying and ranking the differences between business intelligence and data science from practitioners’ perspective using the Delphi method Intelligent decision support system using nested ensemble approach for customer churn in the hotel industry Introducing technological disruption: how breaking media attention on corporate events impacts online sentiment An adaptive and enhanced framework for daily stock market prediction using feature selection and ensemble learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1