{"title":"Superconvergence and postprocessing of the continuous Galerkin method for nonlinear Volterra integro-differential equations","authors":"Mingzhu Zhang, X. Mao, Lijun Yi","doi":"10.1051/m2an/2022100","DOIUrl":null,"url":null,"abstract":"We propose a novel postprocessing technique for improving the global accuracy of the continuous Galerkin (CG) method for nonlinear Volterra integro-differential equations. The key idea behind the postprocessing technique is to add a higher order Lobatto polynomial of degree k + 1 to the CG approximation of degree k . We first show that the CG method superconverges at the nodal points of the time partition. We further prove that the postprocessed CG approximation converges one order faster than the unprocessed CG approximation in the L 2 -, H 1 - and L ∞ -norms. As a by-product of the postprocessed superconvergence results, we construct several a posteriori error estimators and prove that they are asymptotically exact. Numerical examples are presented to highlight the superconvergence properties of the postprocessed CG approximations and the robustness of the a posteriori error estimators.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
We propose a novel postprocessing technique for improving the global accuracy of the continuous Galerkin (CG) method for nonlinear Volterra integro-differential equations. The key idea behind the postprocessing technique is to add a higher order Lobatto polynomial of degree k + 1 to the CG approximation of degree k . We first show that the CG method superconverges at the nodal points of the time partition. We further prove that the postprocessed CG approximation converges one order faster than the unprocessed CG approximation in the L 2 -, H 1 - and L ∞ -norms. As a by-product of the postprocessed superconvergence results, we construct several a posteriori error estimators and prove that they are asymptotically exact. Numerical examples are presented to highlight the superconvergence properties of the postprocessed CG approximations and the robustness of the a posteriori error estimators.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.