{"title":"Dynamics of the Quantum Discord with Weak Measurement for a Two-atom System in Thermal Reservoirs","authors":"M. Bai, H. Xu, Xue-qun Yan","doi":"10.11648/j.ajmp.20200905.11","DOIUrl":null,"url":null,"abstract":"Weak measurement is a kind of state partial collapse measurement developed on the basis of von Neumann measurement and positive operator value measurement, which allows us to explore the quantum world which has the least influence on the research system. Based on the weak measurement theory, the dynamics of quantum discord for two isolated atoms in their own thermal reservoirs is presented. We examine the time evolution of both standard quantum discord and quantum discord with weak measurement for the two-atom system, and analyzes the differences between the standard quantum discord and quantum discord with weak measurement in the evolution process with time, as well as the general role of the strength parameter in determing the discord and affecting its dynamic evolution. We show that quantum discords depend on how weak or strong one perturbs the quantum system. We also show that the difference of the standard quantum discord and the quantum discord with weak measurements increases as the strength parameter decreases. This means that the weak measurements can capture more quantum discord of a bipartite system. Our results show that the weak measurement performed on one of the subsystems can lead to the quantum discord that is a more natural measure of quantum correlations than the standard quantum discord captured by the projective measurements.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"4 1","pages":"68"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajmp.20200905.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Weak measurement is a kind of state partial collapse measurement developed on the basis of von Neumann measurement and positive operator value measurement, which allows us to explore the quantum world which has the least influence on the research system. Based on the weak measurement theory, the dynamics of quantum discord for two isolated atoms in their own thermal reservoirs is presented. We examine the time evolution of both standard quantum discord and quantum discord with weak measurement for the two-atom system, and analyzes the differences between the standard quantum discord and quantum discord with weak measurement in the evolution process with time, as well as the general role of the strength parameter in determing the discord and affecting its dynamic evolution. We show that quantum discords depend on how weak or strong one perturbs the quantum system. We also show that the difference of the standard quantum discord and the quantum discord with weak measurements increases as the strength parameter decreases. This means that the weak measurements can capture more quantum discord of a bipartite system. Our results show that the weak measurement performed on one of the subsystems can lead to the quantum discord that is a more natural measure of quantum correlations than the standard quantum discord captured by the projective measurements.