Aggregation of Zoospores on Sharklet Microtopographic Surfaces

Nhung Nguyen, T. X. Hoang
{"title":"Aggregation of Zoospores on Sharklet Microtopographic Surfaces","authors":"Nhung Nguyen, T. X. Hoang","doi":"10.15625/0868-3166/15668","DOIUrl":null,"url":null,"abstract":"Surfaces with engineered microtopographies are potential candidate against biofouling to replace the use of biocides in the marine environment. Understanding the antifouling mechanism of microtopographic surfaces against marine microorganisms, however, has been limited. In this work, we theoretically studied the aggregation of Ulva linza zoospores on the Sharklet topographic surfaces by employing the extended Surface Energetic Attachment (SEA) model proposedin a previous work. The energy parameters of the model were obtained by matching theoretical results with experimental data for one type of Sharklet surface. Monte Carlo simulations were then carried out for a series of Sharklet surfaces with various numbers of distinct features. Inagreement with prior experimental results, our simulations indicate that engineered topographies promote smaller aggregates than those on a smooth surface. Furthermore, we show that the maximum effect of the Sharklet topography on the aggregate size of U. linza can be obtained with just 3 distinct features.","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/15668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surfaces with engineered microtopographies are potential candidate against biofouling to replace the use of biocides in the marine environment. Understanding the antifouling mechanism of microtopographic surfaces against marine microorganisms, however, has been limited. In this work, we theoretically studied the aggregation of Ulva linza zoospores on the Sharklet topographic surfaces by employing the extended Surface Energetic Attachment (SEA) model proposedin a previous work. The energy parameters of the model were obtained by matching theoretical results with experimental data for one type of Sharklet surface. Monte Carlo simulations were then carried out for a series of Sharklet surfaces with various numbers of distinct features. Inagreement with prior experimental results, our simulations indicate that engineered topographies promote smaller aggregates than those on a smooth surface. Furthermore, we show that the maximum effect of the Sharklet topography on the aggregate size of U. linza can be obtained with just 3 distinct features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
游动孢子在鲨鱼微地形表面的聚集
具有工程微形貌的表面是防止生物污染的潜在候选者,可以取代海洋环境中杀菌剂的使用。然而,对微地形表面对海洋微生物的防污机制的了解仍然有限。本文采用前人提出的扩展表面能量附着(SEA)模型,从理论上研究了小鲨鱼地形表面上linza游动孢子的聚集。通过对某一类Sharklet曲面的理论结果与实验数据进行匹配,得到了模型的能量参数。然后对一系列具有不同数量不同特征的Sharklet曲面进行了蒙特卡罗模拟。与先前的实验结果一致,我们的模拟表明,工程地形比光滑表面上的地形促进更小的聚集体。此外,我们还表明,Sharklet地形对linza U. aggregate size的最大影响可以在3个不同的特征下获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic dynamics of a double-well Bose-Einstein condensate. Measurement of the flux-weighted average cross section for the \(^{186}\)W\((\gamma,p)^{185}\)Ta reaction at the bremsstrahlung end-point energy of 70 MeV $\mu-e$ conversion in a model of electroweak scale right-handed neutrino mass Structure optimization of large-solid-core photonic crystal fibers based on Ge\(_{20}\)Sb\(_{5}\)Se\(_{75}\) for optical applications Research on the synthesis of TiO2-SiO2 nanoparticles for anti-bacterial coating application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1