Object Tracking Based on Global Context Attention

Pub Date : 2021-10-01 DOI:10.4018/ijcini.287595
Yucheng Wang, Xi Chen, Zhongjie Mao, Jia Yan
{"title":"Object Tracking Based on Global Context Attention","authors":"Yucheng Wang, Xi Chen, Zhongjie Mao, Jia Yan","doi":"10.4018/ijcini.287595","DOIUrl":null,"url":null,"abstract":"Previous research has shown that tracking algorithms cannot capture long-distance information and lead to the loss of the object when the object was deformed, the illumination changed, and the background was disturbed by similar objects. To remedy this, this article proposes an object-tracking method by introducing the Global Context attention module into the Multi-Domain Network (MDNet) tracker. This method can learn the robust feature representation of the object through the Global Context attention module to better distinguish the background from the object in the presence of interference factors. Extensive experiments on OTB2013, OTB2015, and UAV20L datasets show that the proposed method is significantly improved compared with MDNet and has competitive performance compared with more mainstream tracking algorithms. At the same time, the method proposed in this article achieves better results when the video sequence contains object deformation, illumination change, and background interference with similar objects.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.287595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous research has shown that tracking algorithms cannot capture long-distance information and lead to the loss of the object when the object was deformed, the illumination changed, and the background was disturbed by similar objects. To remedy this, this article proposes an object-tracking method by introducing the Global Context attention module into the Multi-Domain Network (MDNet) tracker. This method can learn the robust feature representation of the object through the Global Context attention module to better distinguish the background from the object in the presence of interference factors. Extensive experiments on OTB2013, OTB2015, and UAV20L datasets show that the proposed method is significantly improved compared with MDNet and has competitive performance compared with more mainstream tracking algorithms. At the same time, the method proposed in this article achieves better results when the video sequence contains object deformation, illumination change, and background interference with similar objects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于全局上下文关注的目标跟踪
以往的研究表明,在物体变形、光照变化、背景受到类似物体干扰等情况下,跟踪算法无法捕获远距离信息,导致物体丢失。为了解决这一问题,本文提出了一种将全局上下文关注模块引入多域网络(MDNet)跟踪器的目标跟踪方法。该方法可以通过全局上下文关注模块学习目标的鲁棒特征表示,在存在干扰因素的情况下更好地区分背景和目标。在OTB2013、OTB2015和UAV20L数据集上的大量实验表明,该方法与MDNet相比有显著改进,与更主流的跟踪算法相比具有竞争力。同时,本文提出的方法在视频序列中包含物体变形、光照变化、背景干扰等相似物体的情况下效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1