AdNext: a visit-pattern-aware mobile advertising system for urban commercial complexes

Byoungjip Kim, J. Ha, Sang Jeong Lee, Seungwoo Kang, Youngki Lee, Yunseok Rhee, L. Nachman, Junehwa Song
{"title":"AdNext: a visit-pattern-aware mobile advertising system for urban commercial complexes","authors":"Byoungjip Kim, J. Ha, Sang Jeong Lee, Seungwoo Kang, Youngki Lee, Yunseok Rhee, L. Nachman, Junehwa Song","doi":"10.1145/2184489.2184492","DOIUrl":null,"url":null,"abstract":"As smartphones have become prevalent, mobile advertising is getting significant attention as being not only a killer application in future mobile commerce, but also as an important business model of emerging mobile applications to monetize them. In this paper, we present AdNext, a visit-pattern-aware mobile advertising system for urban commercial complexes. AdNext can provide highly relevant ads to users by predicting places that the users will next visit. AdNext predicts the next visit place by learning the sequential visit patterns of commercial complex users in a collective manner. As one of the key enabling techniques for AdNext, we develop a probabilistic prediction model that predicts users' next visit place from their place visit history. To automatically collect the users' place visit history by smartphones, we utilize Wi-Fi-based indoor localization. We demonstrate the feasibility of AdNext by evaluating the accuracy of the prediction model. For the evaluation, we used a dataset collected from COEX Mall, the largest commercial complex in South Korea. Also, we implemented an initial prototype of AdNext with the latest smartphones, and deployed it in COEX Mall.","PeriodicalId":88972,"journal":{"name":"Proceedings. IEEE Workshop on Mobile Computing Systems and Applications","volume":"13 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Mobile Computing Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2184489.2184492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

As smartphones have become prevalent, mobile advertising is getting significant attention as being not only a killer application in future mobile commerce, but also as an important business model of emerging mobile applications to monetize them. In this paper, we present AdNext, a visit-pattern-aware mobile advertising system for urban commercial complexes. AdNext can provide highly relevant ads to users by predicting places that the users will next visit. AdNext predicts the next visit place by learning the sequential visit patterns of commercial complex users in a collective manner. As one of the key enabling techniques for AdNext, we develop a probabilistic prediction model that predicts users' next visit place from their place visit history. To automatically collect the users' place visit history by smartphones, we utilize Wi-Fi-based indoor localization. We demonstrate the feasibility of AdNext by evaluating the accuracy of the prediction model. For the evaluation, we used a dataset collected from COEX Mall, the largest commercial complex in South Korea. Also, we implemented an initial prototype of AdNext with the latest smartphones, and deployed it in COEX Mall.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AdNext:针对城市商业综合体的基于访问模式的移动广告系统
随着智能手机的普及,移动广告越来越受到人们的关注,因为它不仅是未来移动商务的杀手级应用,也是新兴移动应用的重要盈利模式。在本文中,我们提出了AdNext,一个访问模式感知移动广告系统的城市商业综合体。AdNext可以通过预测用户下次访问的地点,为用户提供高度相关的广告。AdNext通过集体学习商业综合体用户的顺序访问模式,预测下一次访问地点。作为AdNext的关键实现技术之一,我们开发了一个概率预测模型,该模型可以根据用户的地点访问历史预测用户下一次访问地点。为了通过智能手机自动收集用户的地点访问历史,我们利用基于wi - fi的室内定位。我们通过评估预测模型的准确性来证明AdNext的可行性。为了进行评估,我们使用了从韩国最大的商业综合体COEX Mall收集的数据集。此外,我们在最新的智能手机上实现了AdNext的初始原型,并将其部署在COEX Mall。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HotMobile '22: The 23rd International Workshop on Mobile Computing Systems and Applications, Tempe, Arizona, USA, March 9 - 10, 2022 Splitting the bill for mobile data with SIMlets Quantifying the potential of ride-sharing using call description records Enabling the transition to the mobile web with WebSieve The case for psychological computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1