On Optimal Polyline Simplification using the Hausdorff and Fréchet Distance

M. V. Kreveld, M. Löffler, Lionov Wiratma
{"title":"On Optimal Polyline Simplification using the Hausdorff and Fréchet Distance","authors":"M. V. Kreveld, M. Löffler, Lionov Wiratma","doi":"10.4230/LIPIcs.SoCG.2018.56","DOIUrl":null,"url":null,"abstract":"We revisit the classical polygonal line simplification problem and study it using the Hausdorff distance and Fr\\'echet distance. Interestingly, no previous authors studied line simplification under these measures in its pure form, namely: for a given $\\varepsilon$ > 0, choose a minimum size subsequence of the vertices of the input such that the Hausdorff or Fr\\'echet distance between the input and output polylines is at most $\\varepsilon$. We analyze how the well-known Douglas-Peucker and Imai-Iri simplification algorithms perform compared to the optimum possible, also in the situation where the algorithms are given a considerably larger error threshold than $\\varepsilon$. Furthermore, we show that computing an optimal simplification using the undirected Hausdorff distance is NP-hard. The same holds when using the directed Hausdorff distance from the input to the output polyline, whereas the reverse can be computed in polynomial time. Finally, to compute the optimal simplification from a polygonal line consisting of $n$ vertices under the Fr\\'echet distance, we give an $O(kn^5)$ time algorithm that requires $O(kn^2)$ space, where $k$ is the output complexity of the simplification.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"14 1","pages":"1-25"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SoCG.2018.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 25

Abstract

We revisit the classical polygonal line simplification problem and study it using the Hausdorff distance and Fr\'echet distance. Interestingly, no previous authors studied line simplification under these measures in its pure form, namely: for a given $\varepsilon$ > 0, choose a minimum size subsequence of the vertices of the input such that the Hausdorff or Fr\'echet distance between the input and output polylines is at most $\varepsilon$. We analyze how the well-known Douglas-Peucker and Imai-Iri simplification algorithms perform compared to the optimum possible, also in the situation where the algorithms are given a considerably larger error threshold than $\varepsilon$. Furthermore, we show that computing an optimal simplification using the undirected Hausdorff distance is NP-hard. The same holds when using the directed Hausdorff distance from the input to the output polyline, whereas the reverse can be computed in polynomial time. Finally, to compute the optimal simplification from a polygonal line consisting of $n$ vertices under the Fr\'echet distance, we give an $O(kn^5)$ time algorithm that requires $O(kn^2)$ space, where $k$ is the output complexity of the simplification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hausdorff和fracimchet距离的最优折线化简
我们重新审视了经典的多边形线化简问题,并利用Hausdorff距离和Fr\' cheet距离对其进行了研究。有趣的是,以前没有作者在这些度量下以其纯粹的形式研究线简化,即:对于给定的$\varepsilon$ > 0,选择输入顶点的最小大小子序列,使得输入和输出折线之间的Hausdorff或Fr\ echet距离最多为$\varepsilon$。我们分析了著名的Douglas-Peucker和Imai-Iri简化算法与最优可能算法相比的表现,以及算法被赋予比$\varepsilon$大得多的错误阈值的情况。此外,我们证明了使用无向Hausdorff距离计算最优简化是np困难的。当使用从输入到输出折线的有向豪斯多夫距离时也是如此,而反过来可以在多项式时间内计算。最后,为了计算由$n$个顶点组成的多边形线在Fr\'echet距离下的最优化简,我们给出了$O(kn^5)$时间算法,该算法需要$O(kn^2)$空间,其中$k$为化简的输出复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
期刊最新文献
On morphs of 1-plane graphs A Geometric Approach to Inelastic Collapse Near-optimal algorithms for point-line fitting problems Algorithms for approximate sparse regression and nearest induced hulls Recognizing weighted and seeded disk graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1