Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-08-04 DOI:10.1016/j.ijforecast.2023.07.001
Alex T. Mallen , Henning Lange , J. Nathan Kutz
{"title":"Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties","authors":"Alex T. Mallen ,&nbsp;Henning Lange ,&nbsp;J. Nathan Kutz","doi":"10.1016/j.ijforecast.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces general mathematical techniques for stable long-term forecasts with calibrated uncertainty measures. For most time series models, the difficulty of obtaining accurate probabilistic future time step predictions increases with the prediction horizon. We propose a surprisingly simple class of models that characterizes time-varying distributions and enables reasonably accurate predictions thousands of time steps into the future. This technique, called Deep Probabilistic Koopman (DPK), is based on recent advances in linear Koopman operator theory and does not require time stepping for future time predictions. We demonstrate the long-term forecasting performance of these models on a diversity of domains, including electricity demand forecasting, atmospheric chemistry, and neuroscience. Our domain-agnostic technique outperforms all 177 domain-specific competitors in the most recent Global Energy Forecasting Competition for electricity demand modelling.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023000717","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces general mathematical techniques for stable long-term forecasts with calibrated uncertainty measures. For most time series models, the difficulty of obtaining accurate probabilistic future time step predictions increases with the prediction horizon. We propose a surprisingly simple class of models that characterizes time-varying distributions and enables reasonably accurate predictions thousands of time steps into the future. This technique, called Deep Probabilistic Koopman (DPK), is based on recent advances in linear Koopman operator theory and does not require time stepping for future time predictions. We demonstrate the long-term forecasting performance of these models on a diversity of domains, including electricity demand forecasting, atmospheric chemistry, and neuroscience. Our domain-agnostic technique outperforms all 177 domain-specific competitors in the most recent Global Energy Forecasting Competition for electricity demand modelling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度概率库普曼:周期性不确定性下的长期时间序列预测
本文介绍了利用校准不确定性度量进行稳定长期预测的一般数学技术。对于大多数时间序列模型来说,获得准确的未来时间步概率预测的难度随着预测范围的增加而增加。我们提出了一类非常简单的模型,它能描述时变分布,并能对未来数千个时间步进行合理准确的预测。这种技术被称为深度概率库普曼(DPK),它基于线性库普曼算子理论的最新进展,在预测未来时间时不需要时间步长。我们在电力需求预测、大气化学和神经科学等多个领域展示了这些模型的长期预测性能。在最近的全球能源预测竞赛中,我们的领域无关技术在电力需求建模方面的表现优于所有 177 个特定领域的竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
On memory-augmented gated recurrent unit network Editorial Board A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching Editorial Board Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1