{"title":"Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties","authors":"Alex T. Mallen , Henning Lange , J. Nathan Kutz","doi":"10.1016/j.ijforecast.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces general mathematical techniques for stable long-term forecasts with calibrated uncertainty measures. For most time series models, the difficulty of obtaining accurate probabilistic future time step predictions increases with the prediction horizon. We propose a surprisingly simple class of models that characterizes time-varying distributions and enables reasonably accurate predictions thousands of time steps into the future. This technique, called Deep Probabilistic Koopman (DPK), is based on recent advances in linear Koopman operator theory and does not require time stepping for future time predictions. We demonstrate the long-term forecasting performance of these models on a diversity of domains, including electricity demand forecasting, atmospheric chemistry, and neuroscience. Our domain-agnostic technique outperforms all 177 domain-specific competitors in the most recent Global Energy Forecasting Competition for electricity demand modelling.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023000717","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces general mathematical techniques for stable long-term forecasts with calibrated uncertainty measures. For most time series models, the difficulty of obtaining accurate probabilistic future time step predictions increases with the prediction horizon. We propose a surprisingly simple class of models that characterizes time-varying distributions and enables reasonably accurate predictions thousands of time steps into the future. This technique, called Deep Probabilistic Koopman (DPK), is based on recent advances in linear Koopman operator theory and does not require time stepping for future time predictions. We demonstrate the long-term forecasting performance of these models on a diversity of domains, including electricity demand forecasting, atmospheric chemistry, and neuroscience. Our domain-agnostic technique outperforms all 177 domain-specific competitors in the most recent Global Energy Forecasting Competition for electricity demand modelling.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.