Efficient sparse collective communication and its application to accelerate distributed deep learning

Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, M. Canini, Amedeo Sapio
{"title":"Efficient sparse collective communication and its application to accelerate distributed deep learning","authors":"Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, M. Canini, Amedeo Sapio","doi":"10.1145/3452296.3472904","DOIUrl":null,"url":null,"abstract":"Efficient collective communication is crucial to parallel-computing applications such as distributed training of large-scale recommendation systems and natural language processing models. Existing collective communication libraries focus on optimizing operations for dense inputs, resulting in transmissions of many zeros when inputs are sparse. This counters current trends that see increasing data sparsity in large models. We propose OmniReduce, an efficient streaming aggregation system that exploits sparsity to maximize effective bandwidth use by sending only non-zero data blocks. We demonstrate that this idea is beneficial and accelerates distributed training by up to 8.2x. Even at 100 Gbps, OmniReduce delivers 1.4--2.9x better performance for network-bottlenecked DNNs.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

Efficient collective communication is crucial to parallel-computing applications such as distributed training of large-scale recommendation systems and natural language processing models. Existing collective communication libraries focus on optimizing operations for dense inputs, resulting in transmissions of many zeros when inputs are sparse. This counters current trends that see increasing data sparsity in large models. We propose OmniReduce, an efficient streaming aggregation system that exploits sparsity to maximize effective bandwidth use by sending only non-zero data blocks. We demonstrate that this idea is beneficial and accelerates distributed training by up to 8.2x. Even at 100 Gbps, OmniReduce delivers 1.4--2.9x better performance for network-bottlenecked DNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效稀疏集体通信及其在分布式深度学习中的应用
高效的集体通信对于大规模推荐系统和自然语言处理模型的分布式训练等并行计算应用至关重要。现有的集体通信库侧重于优化密集输入的操作,导致在输入稀疏时传输许多零。这与当前在大型模型中看到数据稀疏性增加的趋势相反。我们提出了OmniReduce,一个高效的流聚合系统,利用稀疏性,通过只发送非零数据块来最大化有效的带宽使用。我们证明了这种想法是有益的,并将分布式训练速度提高了8.2倍。即使在100 Gbps的速度下,OmniReduce也能为网络瓶颈dnn提供1.4- 2.9倍的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aquila 1Pipe ARROW Insights from operating an IP exchange provider Bento
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1