Modeling and Control Maximum Power Point Tracking of an Autonomous Photovoltaic System Using Artificial Intelligence

Amadou Fousseyni Toure, David Tchoffa, A. El mhamedi, B. Diourte, M. Lamolle
{"title":"Modeling and Control Maximum Power Point Tracking of an Autonomous Photovoltaic System Using Artificial Intelligence","authors":"Amadou Fousseyni Toure, David Tchoffa, A. El mhamedi, B. Diourte, M. Lamolle","doi":"10.4236/epe.2021.1312030","DOIUrl":null,"url":null,"abstract":"Despite investigative efforts seen in the literature, the maximum power point tracking remains again a crucial problem in photovoltaic system (PV) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is treated. We proposed a hybrid controller of maximum power point tracking based on artificial neural networks. This hybrid controller is composed of two neural networks. The first network has two inputs and two outputs: the inputs are solar irradiation and ambient temperature and the outputs are the reference output voltage and current corresponding at the maximum power point. The second network has two inputs and one output: the inputs use the outputs of the first network and the output will be the periodic cycle which controls the DC/DC converter. The training step of neural networks requires two modes: the offline mode and the online mode. The data necessary for the training are collected from a very large number of real- time measurements of the PV module. The performance of the proposed method is analyzed under different operating conditions using the Matlab/Simulink simulation tool. A comparative study between the proposed method and the perturbation and observation approach was presented.","PeriodicalId":62938,"journal":{"name":"能源与动力工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源与动力工程(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/epe.2021.1312030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite investigative efforts seen in the literature, the maximum power point tracking remains again a crucial problem in photovoltaic system (PV) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is treated. We proposed a hybrid controller of maximum power point tracking based on artificial neural networks. This hybrid controller is composed of two neural networks. The first network has two inputs and two outputs: the inputs are solar irradiation and ambient temperature and the outputs are the reference output voltage and current corresponding at the maximum power point. The second network has two inputs and one output: the inputs use the outputs of the first network and the output will be the periodic cycle which controls the DC/DC converter. The training step of neural networks requires two modes: the offline mode and the online mode. The data necessary for the training are collected from a very large number of real- time measurements of the PV module. The performance of the proposed method is analyzed under different operating conditions using the Matlab/Simulink simulation tool. A comparative study between the proposed method and the perturbation and observation approach was presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的自主光伏系统最大功率点跟踪建模与控制
尽管在文献中进行了大量的研究,但最大功率点跟踪仍然是光伏并网系统中的一个关键问题。本文讨论了一种新的最大功率点跟踪技术,这是我们对解决这一问题的贡献。提出了一种基于人工神经网络的最大功率点跟踪混合控制器。该混合控制器由两个神经网络组成。第一个网络有两个输入和两个输出,输入为太阳辐照度和环境温度,输出为最大功率点对应的参考输出电压和电流。第二网络具有两个输入和一个输出:输入使用第一网络的输出,输出将是控制DC/DC转换器的周期周期。神经网络的训练步骤需要两种模式:离线模式和在线模式。培训所需的数据是从PV组件的大量实时测量中收集的。利用Matlab/Simulink仿真工具分析了该方法在不同工况下的性能。并将该方法与微扰观测方法进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
922
期刊最新文献
Battery-Free Power Supply for Wireless Sensor Combining Photovoltaic Cells and Supercapacitors Influence of Leachate Recirculation on Landfill Degradation and Biogas Production Analyzing and Exploring a Model for High-Efficiency Perovskite Solar Cells Performance Improvement of CIGS Solar Cell: A Simulation Approach by SCAPS-1D Kinetics and Process Studies of the Potential for Transformation of Biogas to Biomethane and Liquefaction using Cryogenic Liquid for Domestic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1