Testing community structure for hypergraphs

Mingao Yuan, Ruiqi Liu, Yang Feng, Zuofeng Shang
{"title":"Testing community structure for hypergraphs","authors":"Mingao Yuan, Ruiqi Liu, Yang Feng, Zuofeng Shang","doi":"10.1214/21-aos2099","DOIUrl":null,"url":null,"abstract":"Many complex networks in the real world can be formulated as hypergraphs where community detection has been widely used. However, the fundamental question of whether communities exist or not in an observed hypergraph remains unclear. This work aims to tackle this important problem. Specifically, we systematically study when a hypergraph with community structure can be successfully distinguished from its Erdős–Rényi counterpart, and propose concrete test statistics when the models are distinguishable. The main contribution of this paper is threefold. First, we discover a phase transition in the hyperedge probability for distinguishability. Second, in the bounded-degree regime, we derive a sharp signal-to-noise ratio (SNR) threshold for distinguishability in the special two-community 3uniform hypergraphs, and derive nearly tight SNR thresholds in the general two-community m-uniform hypergraphs. Third, in the dense regime, we propose a computationally feasible test based on sub-hypergraph counts, obtain its asymptotic distribution, and analyze its power. Our results are further extended to nonuniform hypergraphs in which a new test involving both edge and hyperedge information is proposed. The proofs rely on Janson’s contiguity theory (Combin. Probab. Comput. 4 (1995) 369–405), a high-moments driven asymptotic normality result by Gao and Wormald (Probab. Theory Related Fields 130 (2004) 368–376), and a truncation technique for analyzing the likelihood ratio.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Many complex networks in the real world can be formulated as hypergraphs where community detection has been widely used. However, the fundamental question of whether communities exist or not in an observed hypergraph remains unclear. This work aims to tackle this important problem. Specifically, we systematically study when a hypergraph with community structure can be successfully distinguished from its Erdős–Rényi counterpart, and propose concrete test statistics when the models are distinguishable. The main contribution of this paper is threefold. First, we discover a phase transition in the hyperedge probability for distinguishability. Second, in the bounded-degree regime, we derive a sharp signal-to-noise ratio (SNR) threshold for distinguishability in the special two-community 3uniform hypergraphs, and derive nearly tight SNR thresholds in the general two-community m-uniform hypergraphs. Third, in the dense regime, we propose a computationally feasible test based on sub-hypergraph counts, obtain its asymptotic distribution, and analyze its power. Our results are further extended to nonuniform hypergraphs in which a new test involving both edge and hyperedge information is proposed. The proofs rely on Janson’s contiguity theory (Combin. Probab. Comput. 4 (1995) 369–405), a high-moments driven asymptotic normality result by Gao and Wormald (Probab. Theory Related Fields 130 (2004) 368–376), and a truncation technique for analyzing the likelihood ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测试超图的社区结构
在现实世界中,许多复杂的网络都可以表述为超图,其中社区检测已经得到了广泛的应用。然而,在观测到的超图中是否存在群的基本问题仍然不清楚。这项工作旨在解决这个重要问题。具体而言,我们系统地研究了具有群落结构的超图何时能够与Erdős-Rényi对应的超图成功区分,并提出了模型可区分时的具体检验统计量。本文的主要贡献有三个方面。首先,我们发现了可分辨性的超边缘概率中的相变。其次,在有界度域中,我们推导出了特殊双群落3一致超图的显著信噪比(SNR)阈值,并推导出了一般双群落m一致超图的近紧密信噪比阈值。第三,在密集区域,我们提出了一个基于子超图计数的计算可行检验,得到了它的渐近分布,并分析了它的幂。我们的结果进一步推广到非均匀超图,其中提出了一个涉及边缘和超边缘信息的新测试。这些证明依赖于詹森的邻近理论。Probab。计算4(1995)369-405),一个高矩驱动的渐近正态性结果由Gao和Wormald (Probab。理论相关领域130(2004)368-376),以及分析似然比的截断技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1