Helene Nguewou-Hyousse, William L. Scott, D. Paley
{"title":"Distributed Control of a Planar Discrete Elastic Rod Model for Caterpillar-Inspired Locomotion","authors":"Helene Nguewou-Hyousse, William L. Scott, D. Paley","doi":"10.1115/dscc2019-9220","DOIUrl":null,"url":null,"abstract":"\n During crawling, a caterpillar body stretches and bends, and a wave repeatedly travels from the tail to the head. Recently, caterpillar locomotion has been modeled using the theory of planar discrete elastic rods (PDER). This work takes a similar modeling approach and introduces feedback control laws with communication between neighboring segments. Caterpillar locomotion is modeled first as a network of spring-mass-dampers connected through nearest neighbor interactions and then as a network of linked torsional springs. Feedback laws are designed to achieve consensus and traveling wave solutions. Simulation results show the displacement of each segment of a caterpillar during locomotion. These results show promise for the design of feedback control laws in a network model of soft robotic systems.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"40 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
During crawling, a caterpillar body stretches and bends, and a wave repeatedly travels from the tail to the head. Recently, caterpillar locomotion has been modeled using the theory of planar discrete elastic rods (PDER). This work takes a similar modeling approach and introduces feedback control laws with communication between neighboring segments. Caterpillar locomotion is modeled first as a network of spring-mass-dampers connected through nearest neighbor interactions and then as a network of linked torsional springs. Feedback laws are designed to achieve consensus and traveling wave solutions. Simulation results show the displacement of each segment of a caterpillar during locomotion. These results show promise for the design of feedback control laws in a network model of soft robotic systems.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.