Development of Actively-controllable endoscopic forceps

Keisuke Sugawara, K. Ohnishi
{"title":"Development of Actively-controllable endoscopic forceps","authors":"Keisuke Sugawara, K. Ohnishi","doi":"10.1109/AMC.2012.6197041","DOIUrl":null,"url":null,"abstract":"An endoscopic forceps is one of the efficient medical device in minimally invasive surgery. However, the endoscopic forceps has two big problems. First is the endoscopic forceps has friction, and it nonlinearly changes depend on posture of the endoscopic forceps. The friction cause deterioration of operation performance. Second is the endoscopic forceps has only 1-DOF for grasping motion. Therefore, in this paper, Actively-controllable endoscopic forceps is developed. This endoscopic forceps has 2-DOF which are for grasping motion and bending motion. By bending motion, the endoscopic forceps can keep or change posture by itself. In addition, friction associated with changing posture of the endoscopic forceps is modeled by least-square method. Finally, the friction models are applied to bilateral control system. Friction of the endoscopic forceps is compensated, and improvement of operational performance is achieved.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"30 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2012.6197041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An endoscopic forceps is one of the efficient medical device in minimally invasive surgery. However, the endoscopic forceps has two big problems. First is the endoscopic forceps has friction, and it nonlinearly changes depend on posture of the endoscopic forceps. The friction cause deterioration of operation performance. Second is the endoscopic forceps has only 1-DOF for grasping motion. Therefore, in this paper, Actively-controllable endoscopic forceps is developed. This endoscopic forceps has 2-DOF which are for grasping motion and bending motion. By bending motion, the endoscopic forceps can keep or change posture by itself. In addition, friction associated with changing posture of the endoscopic forceps is modeled by least-square method. Finally, the friction models are applied to bilateral control system. Friction of the endoscopic forceps is compensated, and improvement of operational performance is achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动可控内镜钳的研制
内镜钳是微创手术中一种高效的医疗器械。然而,内窥镜钳有两个大问题。首先是内窥镜钳有摩擦力,摩擦力随钳位的变化呈非线性变化。摩擦使操作性能恶化。二是内窥镜钳的抓握运动只有1-DOF。因此,本文开发了主动可控的内镜钳。该内窥镜钳具有两自由度,分别用于抓取运动和弯曲运动。通过弯曲运动,内窥镜钳可以自行保持或改变姿势。此外,利用最小二乘法对内镜钳位变化引起的摩擦进行了建模。最后,将摩擦模型应用于双边控制系统。补偿了内窥镜钳的摩擦,提高了操作性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of optimal algorithm in vacuum path planning of robot The HCI method for upper limb disabilities based on EMG and gyros Position/force decoupling for micro-macro bilateral control based on modal space disturbance observer Focusing control system for suppressing multi-harmonic disturbances in high speed optical disk systems Recognition and classification of human motion based on hidden Markov model for motion database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1