Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

M. Rao
{"title":"Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method","authors":"M. Rao","doi":"10.5281/zenodo.1130672","DOIUrl":null,"url":null,"abstract":"Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.","PeriodicalId":23787,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.1130672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用直接搜索法优化双馈感应发电机等效电路参数
双馈感应发电机(DFIG)是目前许多风力涡轮机的选择。当这些发电机通过变流器连接到电网时,要承受各种电力系统条件,如电压变化、频率变化、短路故障条件等。此外,许多国家,如加拿大、德国、英国、苏格兰等,都有与风力涡轮机相关的不同电网代码。因此,在电网发生故障后,风力发电机组必须提供一定的无功电流。为了满足包括无功电流能力在内的要求,优化电气设计成为DFIG运行的任务。本文旨在优化一种电气设计的等效电路参数,以获得满意的DFIG性能。采用直接搜索法对参数进行优化。选取的变量包括电磁铁芯尺寸(直径和堆长)、槽尺寸、定子与转子径向气隙、绕组铜截面面积。2兆瓦DFIG的优化分别针对三个目标函数进行:最大无功能力(案例I)、最大效率(案例II)和最小重量(案例III)。在优化分析程序中,考虑了电压变化(10%)、功率因数领先和滞后(0.95)、相应滑差的速度(-0.3至+0.3)。比较了各目标函数的优化设计结果。可以得出结论,优化的直接搜索方法有助于确定每个目标函数的最佳电气设计,如效率或无功能力或重量最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application Design to Release Stress A Survey on Pruning Algorithm Based on Optimized Depth Neural Network Analysis of Communication Characteristics of Projectile-Carried Communication Jamming Object Deep LSTM for Generating Brand Personalities Using Social Media: A Case Study from Higher Education Institutions The Key Technology of High-Definition Maps Distribution Based on Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1