Integration of Ru(II)-Bipyridyl and Zinc(II)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-04-01 DOI:10.3866/PKU.WHXB202306046
Hui-Ying Chen, Hao-Lin Zhu, Pei-Qin Liao, Xiao-Ming Chen
{"title":"Integration of Ru(II)-Bipyridyl and Zinc(II)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction","authors":"Hui-Ying Chen,&nbsp;Hao-Lin Zhu,&nbsp;Pei-Qin Liao,&nbsp;Xiao-Ming Chen","doi":"10.3866/PKU.WHXB202306046","DOIUrl":null,"url":null,"abstract":"<div><div>Efficiently converting CO<sub>2</sub> and H<sub>2</sub>O into value-added chemicals using solar energy is a viable approach to address global warming and the energy crisis. However, achieving artificial photocatalytic CO<sub>2</sub> reduction using H<sub>2</sub>O as the reductant poses challenges is due to the difficulty in efficient cooperation among multiple functional moieties. Metal-organic frameworks (MOFs) are promising candidates for overall CO<sub>2</sub> photoreduction due to their large surface area, diverse active sites, and excellent tailorability. In this study, we designed a metal-organic framework photocatalyst, named PCN-224(Zn)-Bpy(Ru), by integrating photoactive Zn(II)-porphyrin and Ru(II)-bipyridyl moieties. In comparison, two isostructural MOFs just with either Zn(II)-porphyrin or Ru(II)-bipyridyl moiety, namely PCN-224-Bpy(Ru) and PCN-224(Zn)-Bpy were also synthesized. As a result, PCN-224(Zn)-Bpy(Ru) exhibited the highest photocatalytic conversion rate of CO<sub>2</sub> to CO, with a production rate of 7.6 μmol·g<sup>−1</sup>·h<sup>−1</sup> in a mixed solvent of CH<sub>3</sub>CN and H<sub>2</sub>O, without the need for co-catalysts, photosensitizers, or sacrificial agents. Mass spectrometer analysis detected the signals of <sup>13</sup>CO (<em>m</em>/<em>z</em> = 29), <sup>13</sup>C<sup>18</sup>O (<em>m</em>/<em>z</em> = 31), <sup>16</sup>O<sup>18</sup>O (<em>m</em>/<em>z</em> = 34), and <sup>18</sup>O<sub>2</sub> (<em>m</em>/<em>z</em> = 36), confirming that CO<sub>2</sub> and H<sub>2</sub>O acted as the carbon and oxygen sources for CO and O<sub>2</sub>, respectively, thereby confirming the coupling of photocatalytic CO<sub>2</sub> reduction with H<sub>2</sub>O oxidation. In contrast, using PCN-224-Bpy(Ru) or PCN-224(Zn)-Bpy as catalysts under the same conditions resulted in significantly lower CO production rates of only 1.5 and 0 μmol·g<sup>−1</sup>·h<sup>−1</sup>, respectively. Mechanistic studies revealed that the lowest unoccupied molecular orbital (LUMO) potential of PCN-224(Zn)-Bpy(Ru) is more negative than the redox potentials of CO<sub>2</sub>/CO, and the highest occupied molecular orbital (HOMO) potential is more positive than that of H<sub>2</sub>O/O<sub>2</sub>, satisfying the thermodynamic requirements for overall photocatalytic CO<sub>2</sub> reduction. In comparison, the HOMO potential of PCN-224(Zn)-Bpy without Ru(II)-bipyridyl moieties is less positive than that of H<sub>2</sub>O/O<sub>2</sub>, indicating that the Ru(II)-bipyridyl moiety is thermodynamically necessary for CO<sub>2</sub> reduction coupled with H<sub>2</sub>O oxidation. Additionally, photoluminescence spectroscopy revealed that the fluorescence of PCN-224(Zn)-Bpy(Ru) was almost completely quenched, and a longer average photoluminescence lifetime compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru) was observed. These suggest a low recombination rate of photogenerated carriers in PCN-224(Zn)-Bpy(Ru), which also supported by the higher photocurrent observed in PCN-224(Zn)-Bpy(Ru) compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru). In summary, the integrated Zn(II)-porphyrin and Ru(II)-bipyridyl moieties in PCN-224(Zn)-Bpy(Ru) play important roles of a photosensitizer and CO<sub>2</sub> reduction as well as H<sub>2</sub>O oxidation sites, and their efficient cooperation optimizes the band structure, thereby facilitating the coupling of CO<sub>2</sub> reduction with H<sub>2</sub>O oxidation and resulting in high-performance artificial photocatalytic CO<sub>2</sub> reduction.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (89KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 4","pages":"Article 2306046"},"PeriodicalIF":10.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100068182400122X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiently converting CO2 and H2O into value-added chemicals using solar energy is a viable approach to address global warming and the energy crisis. However, achieving artificial photocatalytic CO2 reduction using H2O as the reductant poses challenges is due to the difficulty in efficient cooperation among multiple functional moieties. Metal-organic frameworks (MOFs) are promising candidates for overall CO2 photoreduction due to their large surface area, diverse active sites, and excellent tailorability. In this study, we designed a metal-organic framework photocatalyst, named PCN-224(Zn)-Bpy(Ru), by integrating photoactive Zn(II)-porphyrin and Ru(II)-bipyridyl moieties. In comparison, two isostructural MOFs just with either Zn(II)-porphyrin or Ru(II)-bipyridyl moiety, namely PCN-224-Bpy(Ru) and PCN-224(Zn)-Bpy were also synthesized. As a result, PCN-224(Zn)-Bpy(Ru) exhibited the highest photocatalytic conversion rate of CO2 to CO, with a production rate of 7.6 μmol·g−1·h−1 in a mixed solvent of CH3CN and H2O, without the need for co-catalysts, photosensitizers, or sacrificial agents. Mass spectrometer analysis detected the signals of 13CO (m/z = 29), 13C18O (m/z = 31), 16O18O (m/z = 34), and 18O2 (m/z = 36), confirming that CO2 and H2O acted as the carbon and oxygen sources for CO and O2, respectively, thereby confirming the coupling of photocatalytic CO2 reduction with H2O oxidation. In contrast, using PCN-224-Bpy(Ru) or PCN-224(Zn)-Bpy as catalysts under the same conditions resulted in significantly lower CO production rates of only 1.5 and 0 μmol·g−1·h−1, respectively. Mechanistic studies revealed that the lowest unoccupied molecular orbital (LUMO) potential of PCN-224(Zn)-Bpy(Ru) is more negative than the redox potentials of CO2/CO, and the highest occupied molecular orbital (HOMO) potential is more positive than that of H2O/O2, satisfying the thermodynamic requirements for overall photocatalytic CO2 reduction. In comparison, the HOMO potential of PCN-224(Zn)-Bpy without Ru(II)-bipyridyl moieties is less positive than that of H2O/O2, indicating that the Ru(II)-bipyridyl moiety is thermodynamically necessary for CO2 reduction coupled with H2O oxidation. Additionally, photoluminescence spectroscopy revealed that the fluorescence of PCN-224(Zn)-Bpy(Ru) was almost completely quenched, and a longer average photoluminescence lifetime compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru) was observed. These suggest a low recombination rate of photogenerated carriers in PCN-224(Zn)-Bpy(Ru), which also supported by the higher photocurrent observed in PCN-224(Zn)-Bpy(Ru) compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru). In summary, the integrated Zn(II)-porphyrin and Ru(II)-bipyridyl moieties in PCN-224(Zn)-Bpy(Ru) play important roles of a photosensitizer and CO2 reduction as well as H2O oxidation sites, and their efficient cooperation optimizes the band structure, thereby facilitating the coupling of CO2 reduction with H2O oxidation and resulting in high-performance artificial photocatalytic CO2 reduction.
  1. Download: Download high-res image (89KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ru(II)-联吡啶基团和锌(II)-卟啉基团在金属-有机框架中的集成,用于高效的CO2全光还原
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Experimental and theoretical investigations of solvent polarity effect on ESIPT mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone Recent advances of functional nanomaterials for screen-printed photoelectrochemical biosensors Engineering multiple optimization strategy on bismuth oxyhalide photoactive materials for efficient photoelectrochemical applications Machine learning enables the prediction of amide bond synthesis based on small datasets Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1