I Know That Person: Generative Full Body and Face De-identification of People in Images

K. Brkić, I. Sikirić, T. Hrkać, Z. Kalafatić
{"title":"I Know That Person: Generative Full Body and Face De-identification of People in Images","authors":"K. Brkić, I. Sikirić, T. Hrkać, Z. Kalafatić","doi":"10.1109/CVPRW.2017.173","DOIUrl":null,"url":null,"abstract":"We propose a model for full body and face deidentification of humans in images. Given a segmentation of the human figure, our model generates a synthetic human image with an alternative appearance that looks natural and fits the segmentation outline. The model is usable with various levels of segmentation, from simple human figure blobs to complex garment-level segmentations. The level of detail in the de-identified output depends on the level of detail in the input segmentation. The model de-identifies not only primary biometric identifiers (e.g. the face), but also soft and non-biometric identifiers including clothing, hairstyle, etc. Quantitative and perceptual experiments indicate that our model produces de-identified outputs that thwart human and machine recognition, while preserving data utility and naturalness.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"10 1","pages":"1319-1328"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

We propose a model for full body and face deidentification of humans in images. Given a segmentation of the human figure, our model generates a synthetic human image with an alternative appearance that looks natural and fits the segmentation outline. The model is usable with various levels of segmentation, from simple human figure blobs to complex garment-level segmentations. The level of detail in the de-identified output depends on the level of detail in the input segmentation. The model de-identifies not only primary biometric identifiers (e.g. the face), but also soft and non-biometric identifiers including clothing, hairstyle, etc. Quantitative and perceptual experiments indicate that our model produces de-identified outputs that thwart human and machine recognition, while preserving data utility and naturalness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我认识那个人:图像中人的生成全身和面部去认同
我们提出了一种人体和人脸图像去识别模型。给定人体的分割,我们的模型生成具有替代外观的合成人体图像,该图像看起来自然且符合分割轮廓。该模型可用于各种级别的分割,从简单的人体斑点到复杂的服装级别分割。去识别输出的细节程度取决于输入分割的细节程度。该模型不仅去识别主要的生物特征(如面部),还去识别软特征和非生物特征,如服装、发型等。定量和感知实验表明,我们的模型产生的去识别输出阻碍了人类和机器的识别,同时保留了数据的实用性和自然性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1