Non-local Deep Features for Salient Object Detection

Zhiming Luo, A. Mishra, Andrew Achkar, Justin A. Eichel, Shaozi Li, Pierre-Marc Jodoin
{"title":"Non-local Deep Features for Salient Object Detection","authors":"Zhiming Luo, A. Mishra, Andrew Achkar, Justin A. Eichel, Shaozi Li, Pierre-Marc Jodoin","doi":"10.1109/CVPR.2017.698","DOIUrl":null,"url":null,"abstract":"Saliency detection aims to highlight the most relevant objects in an image. Methods using conventional models struggle whenever salient objects are pictured on top of a cluttered background while deep neural nets suffer from excess complexity and slow evaluation speeds. In this paper, we propose a simplified convolutional neural network which combines local and global information through a multi-resolution 4×5 grid structure. Instead of enforcing spacial coherence with a CRF or superpixels as is usually the case, we implemented a loss function inspired by the Mumford-Shah functional which penalizes errors on the boundary. We trained our model on the MSRA-B dataset, and tested it on six different saliency benchmark datasets. Results show that our method is on par with the state-of-the-art while reducing computation time by a factor of 18 to 100 times, enabling near real-time, high performance saliency detection.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"16 1","pages":"6593-6601"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"430","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 430

Abstract

Saliency detection aims to highlight the most relevant objects in an image. Methods using conventional models struggle whenever salient objects are pictured on top of a cluttered background while deep neural nets suffer from excess complexity and slow evaluation speeds. In this paper, we propose a simplified convolutional neural network which combines local and global information through a multi-resolution 4×5 grid structure. Instead of enforcing spacial coherence with a CRF or superpixels as is usually the case, we implemented a loss function inspired by the Mumford-Shah functional which penalizes errors on the boundary. We trained our model on the MSRA-B dataset, and tested it on six different saliency benchmark datasets. Results show that our method is on par with the state-of-the-art while reducing computation time by a factor of 18 to 100 times, enabling near real-time, high performance saliency detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于显著目标检测的非局部深度特征
显著性检测旨在突出显示图像中最相关的物体。每当在杂乱的背景上描绘出突出的物体时,使用传统模型的方法就会遇到困难,而深度神经网络则受到过度复杂性和缓慢评估速度的困扰。在本文中,我们提出了一种简化的卷积神经网络,它通过多分辨率4×5网格结构结合了局部和全局信息。与通常使用CRF或超像素强制空间一致性不同,我们实现了一个受Mumford-Shah函数启发的损失函数,该函数用于惩罚边界上的错误。我们在MSRA-B数据集上训练我们的模型,并在六个不同的显著性基准数据集上进行测试。结果表明,我们的方法与最先进的方法相当,同时将计算时间减少了18到100倍,实现了近实时、高性能的显著性检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1