Gamma Irradiation of Aqueos Solution of L-Aspartic Acid, L-Aspartic Acid in Solid State, and L-Aspartic Acid Adsorbed into Na-Montmorillonite: Its Relevance in Chemistry Prebiotic

A. Meléndez-López, M. F. García-Hurtado, J. Cruz-Castañeda, A. Negrón-Mendoza, S. Ramos-Bernal, A. Heredia
{"title":"Gamma Irradiation of Aqueos Solution of L-Aspartic Acid, L-Aspartic Acid in Solid State, and L-Aspartic Acid Adsorbed into Na-Montmorillonite: Its Relevance in Chemistry Prebiotic","authors":"A. Meléndez-López, M. F. García-Hurtado, J. Cruz-Castañeda, A. Negrón-Mendoza, S. Ramos-Bernal, A. Heredia","doi":"10.15415/JNP.2021.82012","DOIUrl":null,"url":null,"abstract":"Aspartic acid is an amino acid present in the modern proteins, however, is considered a primitive amino acid hence its importance in prebiotic chemistry experiments studies. In some works of prebiotic chemistry have been studied the synthesis and the stability of organic matter under high energy sources, and the role of clays has been highlighted due to clays that can affect the reaction mechanisms in the radiolytic processes. The present work is focused on the study of the role of Namontmorillonite in the gamma radiolysis processes of L-aspartic acid. Gamma radiolysis processes were carried out in three different systems a) L-aspartic acid in aqueous solution; b) L-aspartic acid in solid-state; and c) L-aspartic acid adsorbed into Na-montmorillonite. L-aspartic acid was analyzed by high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLCESI-MS). The results showed that the decomposition of L-aspartic acid considerably decreased in the presence of clay thus highlighting the protector role of clays and favors the stability of organic matter even under the possible high energy conditions of primitive environments. The principal product ofgamma radiolysis of L-aspartic acid was succinic acid produced by deamination reaction. On the other hand, when aspartic acid was irradiated in solid-state the main product was the L-aspartic acid dimer. Both radiolysis products are important for chemical evolution processes for L-aspartic acid in primitive environments.","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"25 1","pages":"105-108"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/JNP.2021.82012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aspartic acid is an amino acid present in the modern proteins, however, is considered a primitive amino acid hence its importance in prebiotic chemistry experiments studies. In some works of prebiotic chemistry have been studied the synthesis and the stability of organic matter under high energy sources, and the role of clays has been highlighted due to clays that can affect the reaction mechanisms in the radiolytic processes. The present work is focused on the study of the role of Namontmorillonite in the gamma radiolysis processes of L-aspartic acid. Gamma radiolysis processes were carried out in three different systems a) L-aspartic acid in aqueous solution; b) L-aspartic acid in solid-state; and c) L-aspartic acid adsorbed into Na-montmorillonite. L-aspartic acid was analyzed by high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLCESI-MS). The results showed that the decomposition of L-aspartic acid considerably decreased in the presence of clay thus highlighting the protector role of clays and favors the stability of organic matter even under the possible high energy conditions of primitive environments. The principal product ofgamma radiolysis of L-aspartic acid was succinic acid produced by deamination reaction. On the other hand, when aspartic acid was irradiated in solid-state the main product was the L-aspartic acid dimer. Both radiolysis products are important for chemical evolution processes for L-aspartic acid in primitive environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
l -天冬氨酸、固态l -天冬氨酸和l -天冬氨酸吸附在na -蒙脱土中的伽马辐射:与化学益生元的相关性
天冬氨酸是一种存在于现代蛋白质中的氨基酸,但被认为是一种原始氨基酸,因此在益生元化学实验研究中具有重要意义。在一些益生元化学的研究中,研究了高能量源下有机物的合成和稳定性,并强调了粘土在辐射分解过程中的作用,因为粘土可以影响反应机制。本文主要研究了纳蒙脱土在l -天冬氨酸γ辐射分解过程中的作用。在三种不同的体系中进行γ辐射分解过程a)水溶液中的l -天冬氨酸;b)固态l -天冬氨酸;c) l -天冬氨酸吸附在钠蒙脱土上。采用高效液相色谱-电喷雾电离-质谱法(HPLCESI-MS)对l -天冬氨酸进行分析。结果表明,在粘土存在的情况下,l -天冬氨酸的分解明显减少,从而突出了粘土的保护作用,即使在原始环境可能存在的高能量条件下,也有利于有机质的稳定。l -天冬氨酸辐射分解的主要产物是脱胺反应产生的琥珀酸。另一方面,当天冬氨酸以固态形式辐照时,主要产物是l -天冬氨酸二聚体。这两种辐射分解产物对l -天冬氨酸在原始环境下的化学演化过程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radii of Thorium Nuclides Lying in Between the Drip Lines Charge Radius And Neutron Skin Thickness Of Platinum And Osmium Isotopes Near The Nuclear Drip Lines Evaluation of Natural Radioactivity Levels and Exhalation rate of 222Rn and 220Rn in the Soil Samples from the Kuthiran Hills, Kerala, India Deformation Effect on Proton Bubble Structure in N = 28 Isotones Phase Shift Analysis for Neutron-Alpha Elastic Scattering Using Phase Function Method with Local Gaussian Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1