Compact representation of autonomic stimulation on cardiorespiratory signals by principal component analysis

M. Emdin, A. Taddei, M. Varanini, J. Marin Neto, C. Carpeggiani, A. L'Abbate, C. Marchesi
{"title":"Compact representation of autonomic stimulation on cardiorespiratory signals by principal component analysis","authors":"M. Emdin, A. Taddei, M. Varanini, J. Marin Neto, C. Carpeggiani, A. L'Abbate, C. Marchesi","doi":"10.1109/CIC.1993.378480","DOIUrl":null,"url":null,"abstract":"Multiparametric monitoring of patients allows a better comprehension of their clinical evolution, but yields a large amount of data, difficult to be analysed and compared: this makes desirable a compact data interpretation and representation. The authors describe the application of principal component analysis (PCA), a technique allowing the reduction of the data set dimensionality, to a series of parameters extracted from cardiovascular (ECG, systemic arterial pressure) and respiratory signals. An x-y plot, built up with the first two principal components (PC's), provides a compact representation of the beat-to-beat variation of the signal features as compared with basal conditions, during different autonomic stimulations (passive tilt test Valsalva manoeuvre, handgrip test baroreflex stimulation by phenylephrine administration).<<ETX>>","PeriodicalId":20445,"journal":{"name":"Proceedings of Computers in Cardiology Conference","volume":"58 1","pages":"157-160"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Computers in Cardiology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1993.378480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Multiparametric monitoring of patients allows a better comprehension of their clinical evolution, but yields a large amount of data, difficult to be analysed and compared: this makes desirable a compact data interpretation and representation. The authors describe the application of principal component analysis (PCA), a technique allowing the reduction of the data set dimensionality, to a series of parameters extracted from cardiovascular (ECG, systemic arterial pressure) and respiratory signals. An x-y plot, built up with the first two principal components (PC's), provides a compact representation of the beat-to-beat variation of the signal features as compared with basal conditions, during different autonomic stimulations (passive tilt test Valsalva manoeuvre, handgrip test baroreflex stimulation by phenylephrine administration).<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自主神经刺激对心肺信号的主成分分析
对患者的多参数监测可以更好地理解他们的临床演变,但产生大量数据,难以分析和比较:这使得需要一个紧凑的数据解释和表示。作者描述了主成分分析(PCA)的应用,这是一种允许将数据集维数降低到从心血管(ECG,全身动脉压)和呼吸信号中提取的一系列参数的技术。由前两个主成分(PC)组成的x-y图提供了与基础条件相比,在不同的自主神经刺激(被动倾斜测试Valsalva机动,握力测试苯基肾上腺素施加的压力反射刺激)期间信号特征的搏动变化的紧凑表示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 528 channel system for the acquisition and display of defibrillation and electrocardiographic potentials Computers: the heart of screening Signal averaging enhancement by jitter deconvolution Numerical simulation of the flow in model skeletal muscle ventricles Transmembrane potential changes during stimulation in a bidomain model of the myocardium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1