Jian Li, Huihui Zhou, Rong-Yuh Chen, Tingchao Yu, Miaomiao Ye
{"title":"The degradation efficiency and mechanism of meclofenamic acid in aqueous solution by UV irradiation","authors":"Jian Li, Huihui Zhou, Rong-Yuh Chen, Tingchao Yu, Miaomiao Ye","doi":"10.1515/jaots-2016-0188","DOIUrl":null,"url":null,"abstract":"Abstract: The photodegradation of meclofenamic acid (MCFA) was investigated using UV irradiation process. Parameters affecting the photodegradation process such as dissolved oxygen, reaction temperature, solution pH, initial MCFA concentration, humic acid, cations and anions were carried out. The intermediate products were identified by HPLC-MS analysis, and a tentative photodegradation pathway of MCFA was proposed. Results show that the photodegradation of MCFA can be modeled by the first-order kinetics. The photodegradation efficiency increases with the decreased concentration of humic acid or the decreased initial MCFA concentration, while the reaction temperature and the inorganic ions have no significant effect on the MCFA removal. It has found that the optimal initial solution pH for MCFA degradation is about 7.0. Finally, the HPLC-MS results reveal that the Cl atom in the MCFA molecule would form Cl–, followed by dechlorination, hydroxylation and cyclization of pentacyclic compounds.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract: The photodegradation of meclofenamic acid (MCFA) was investigated using UV irradiation process. Parameters affecting the photodegradation process such as dissolved oxygen, reaction temperature, solution pH, initial MCFA concentration, humic acid, cations and anions were carried out. The intermediate products were identified by HPLC-MS analysis, and a tentative photodegradation pathway of MCFA was proposed. Results show that the photodegradation of MCFA can be modeled by the first-order kinetics. The photodegradation efficiency increases with the decreased concentration of humic acid or the decreased initial MCFA concentration, while the reaction temperature and the inorganic ions have no significant effect on the MCFA removal. It has found that the optimal initial solution pH for MCFA degradation is about 7.0. Finally, the HPLC-MS results reveal that the Cl atom in the MCFA molecule would form Cl–, followed by dechlorination, hydroxylation and cyclization of pentacyclic compounds.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs