Interactome analysis reveals molecular mechanisms underlying the association between selenium binding protein 1 expression and the malignant features of tumor cells
Takashi Tajima, F. Kito, T. Ohta, K. Shiozawa, A. Kawai, T. Kondo
{"title":"Interactome analysis reveals molecular mechanisms underlying the association between selenium binding protein 1 expression and the malignant features of tumor cells","authors":"Takashi Tajima, F. Kito, T. Ohta, K. Shiozawa, A. Kawai, T. Kondo","doi":"10.2198/JELECTROPH.59.1","DOIUrl":null,"url":null,"abstract":"The potential biological and clinical significance of selenium binding protein 1 (SBP1) has been suggested in various types of cancer. To evaluate the role of SBP1 and reveal the molecular basis for its function, we examined the SBP1 protein complex. A gene transfection assay revealed that overexpression of SBP1 promoted proliferation and migration of A549 lung adenocarcinoma cells. Halo-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 23 components of the SBP1 protein complex. The functional classification of these 23 proteins suggests that the SBP1 complex participates in critical biological events including cell structure, protein translation, stress response, chaperone, and apoptosis. Moreover, the SBP1 complex includes several proteins that are aberrantly expressed in cancers. These finding indicate that SBP1 may function coordinately with these multiple proteins to facilitate cancer progression. A comprehensive study of the multiple proteins associated with SPB1 together with an examination of individual proteins will be required to elucidate the roles of aberrant SBP1 regulation in cancer progression.","PeriodicalId":15059,"journal":{"name":"Journal of capillary electrophoresis","volume":"11 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2198/JELECTROPH.59.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The potential biological and clinical significance of selenium binding protein 1 (SBP1) has been suggested in various types of cancer. To evaluate the role of SBP1 and reveal the molecular basis for its function, we examined the SBP1 protein complex. A gene transfection assay revealed that overexpression of SBP1 promoted proliferation and migration of A549 lung adenocarcinoma cells. Halo-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 23 components of the SBP1 protein complex. The functional classification of these 23 proteins suggests that the SBP1 complex participates in critical biological events including cell structure, protein translation, stress response, chaperone, and apoptosis. Moreover, the SBP1 complex includes several proteins that are aberrantly expressed in cancers. These finding indicate that SBP1 may function coordinately with these multiple proteins to facilitate cancer progression. A comprehensive study of the multiple proteins associated with SPB1 together with an examination of individual proteins will be required to elucidate the roles of aberrant SBP1 regulation in cancer progression.