A novel technique for converting nominal attributes to numeric attributes for intrusion detection

S. Samdani, Sanyam Shukla
{"title":"A novel technique for converting nominal attributes to numeric attributes for intrusion detection","authors":"S. Samdani, Sanyam Shukla","doi":"10.1109/ICCCNT.2017.8204171","DOIUrl":null,"url":null,"abstract":"Intrusion Detection has been a popular area of research due to increase in number of attacks. Intrusion Detection is a classification problem, in which some of the attributes are nominal. Classification algorithms like Support Vector Machine, Extreme Learning Machine, Neural Network etc. are not capable of handling nominal features. This leads to the need of method for converting nominal features to numeric features. None of research articles published till date have evaluated the appropriate method of nominal to numeric conversion for intrusion detection problem. This work explores Target Methods, Dummy Methods and Influence Value Method for Intrusion Detection to convert nominal attributes to numeric attributes. This work also proposes a new method for nominal to numeric conversion, which performs better than existing methods. The results presented in this paper evaluated using NSL-KDD.","PeriodicalId":6581,"journal":{"name":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2017.8204171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Intrusion Detection has been a popular area of research due to increase in number of attacks. Intrusion Detection is a classification problem, in which some of the attributes are nominal. Classification algorithms like Support Vector Machine, Extreme Learning Machine, Neural Network etc. are not capable of handling nominal features. This leads to the need of method for converting nominal features to numeric features. None of research articles published till date have evaluated the appropriate method of nominal to numeric conversion for intrusion detection problem. This work explores Target Methods, Dummy Methods and Influence Value Method for Intrusion Detection to convert nominal attributes to numeric attributes. This work also proposes a new method for nominal to numeric conversion, which performs better than existing methods. The results presented in this paper evaluated using NSL-KDD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于入侵检测的标称属性转换为数字属性的新技术
随着入侵检测技术的不断发展,入侵检测技术已成为研究的热点。入侵检测是一个分类问题,其中一些属性是标称的。支持向量机、极限学习机、神经网络等分类算法无法处理标称特征。这导致需要将标称特征转换为数字特征的方法。迄今为止,还没有研究文章对入侵检测问题的标称到数值转换的合适方法进行评估。本文探讨了入侵检测的目标方法、虚拟方法和影响值方法,将名义属性转换为数字属性。本文还提出了一种标称到数字转换的新方法,该方法的性能优于现有方法。使用NSL-KDD对本文的结果进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of energy optimization in wireless sensor networks based on efficient protocols with algorithms An Improved Dark Channel Prior for Fast Dehazing of Outdoor Images A Survey on Emerging Technologies in Wireless Body Area Network Identity Management in IoT using Blockchain Ad Service Detection - A Comparative Study Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1