Sacrificial Doping as an Approach to Controlling the Energy Properties of Adsorption Sites in Gas-Sensitive ZnO Nanowires

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Micro & Nano Letters Pub Date : 2023-06-01 DOI:10.3390/micro3020040
S. Nalimova, Z. Shomakhov, A. Bobkov, V. Moshnikov
{"title":"Sacrificial Doping as an Approach to Controlling the Energy Properties of Adsorption Sites in Gas-Sensitive ZnO Nanowires","authors":"S. Nalimova, Z. Shomakhov, A. Bobkov, V. Moshnikov","doi":"10.3390/micro3020040","DOIUrl":null,"url":null,"abstract":"Currently, devices for environmental gas analyses are required in many areas of application. Among such devices, semiconductor-resistive gas sensors differ advantageously. However, their characteristics need further improvement. The development of methods for controlling the surface properties of nanostructured metal oxides for their use as gas sensors is of great interest. In this paper, a method involving the sacrificial doping of ZnO nanowires to control the content of their surface defects (oxygen vacancies) was proposed. Zinc oxide nanowires were synthesized using the hydrothermal method with sodium iodide or bromide as an additional precursor. The surface composition was studied using X-ray photoelectron spectroscopy. The sensor properties of the isopropyl alcohol vapors at 150 °C were studied. It was shown that a higher concentration of oxygen vacancies/hydroxyl groups was observed on the surfaces of the samples synthesized with the addition of iodine and bromine precursors compared to the pure zinc oxide nanowires. It was also found out that these samples were more sensitive to isopropyl alcohol vapors. A model was proposed to explain the appearance of additional oxygen vacancies in the subsurface layer of the zinc oxide nanowires when sodium iodide or sodium bromide was added to the initial solution. The roles of oxygen vacancies and surface hydroxyl groups in providing the samples with an increased sensitivity were explained. Thus, a method involving the sacrificial doping of zinc oxide nanowires has been developed, which led to an improvement in their gas sensor characteristics due to an increase in the concentration of oxygen vacancies on their surface. The results are promising for percolation gas sensors equipped with additional water vapor traps that work stably in a high humidity.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3020040","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Currently, devices for environmental gas analyses are required in many areas of application. Among such devices, semiconductor-resistive gas sensors differ advantageously. However, their characteristics need further improvement. The development of methods for controlling the surface properties of nanostructured metal oxides for their use as gas sensors is of great interest. In this paper, a method involving the sacrificial doping of ZnO nanowires to control the content of their surface defects (oxygen vacancies) was proposed. Zinc oxide nanowires were synthesized using the hydrothermal method with sodium iodide or bromide as an additional precursor. The surface composition was studied using X-ray photoelectron spectroscopy. The sensor properties of the isopropyl alcohol vapors at 150 °C were studied. It was shown that a higher concentration of oxygen vacancies/hydroxyl groups was observed on the surfaces of the samples synthesized with the addition of iodine and bromine precursors compared to the pure zinc oxide nanowires. It was also found out that these samples were more sensitive to isopropyl alcohol vapors. A model was proposed to explain the appearance of additional oxygen vacancies in the subsurface layer of the zinc oxide nanowires when sodium iodide or sodium bromide was added to the initial solution. The roles of oxygen vacancies and surface hydroxyl groups in providing the samples with an increased sensitivity were explained. Thus, a method involving the sacrificial doping of zinc oxide nanowires has been developed, which led to an improvement in their gas sensor characteristics due to an increase in the concentration of oxygen vacancies on their surface. The results are promising for percolation gas sensors equipped with additional water vapor traps that work stably in a high humidity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牺牲掺杂作为控制气敏ZnO纳米线中吸附位点能量特性的方法
目前,许多应用领域都需要环境气体分析设备。在这类装置中,半导体电阻式气体传感器的不同之处是有利的。然而,他们的特点需要进一步完善。开发控制纳米结构金属氧化物表面性质的方法,使其用作气体传感器是一个非常有意义的问题。本文提出了一种通过牺牲掺杂来控制ZnO纳米线表面缺陷(氧空位)含量的方法。以碘化钠或溴化物为前驱体,采用水热法制备氧化锌纳米线。用x射线光电子能谱对其表面组成进行了研究。研究了异丙醇蒸汽在150℃时的传感器性能。结果表明,与纯氧化锌纳米线相比,添加碘和溴前驱体合成的样品表面有更高浓度的氧空位/羟基。还发现这些样品对异丙醇蒸气更敏感。提出了一个模型来解释当初始溶液中加入碘化钠或溴化钠时,氧化锌纳米线的亚表面层中出现额外的氧空位。解释了氧空位和表面羟基在提高样品灵敏度方面的作用。因此,一种涉及牺牲掺杂氧化锌纳米线的方法已经被开发出来,由于其表面氧空位浓度的增加,导致其气体传感器特性的改善。这一结果对于配备额外的水蒸气捕集器的渗透气体传感器来说是有希望的,这种传感器可以在高湿度条件下稳定工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro & Nano Letters
Micro & Nano Letters 工程技术-材料科学:综合
CiteScore
3.30
自引率
0.00%
发文量
58
审稿时长
2.8 months
期刊介绍: Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities. Scope Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities. Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications. Typical topics include: Micro and nanostructures for the device communities MEMS and NEMS Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data Synthesis and processing Micro and nano-photonics Molecular machines, circuits and self-assembly Organic and inorganic micro and nanostructures Micro and nano-fluidics
期刊最新文献
Catalytic oxidation of CO over CuO@TiO2 catalyst: The relationship between activity and adsorption performance Anticancer effect of surface functionalized nano titanium dioxide with 5-fluorouracil on oral cancer cell line—An in vitro study Green synthesis of cerium oxide nanoparticles via Linum usitatissimum seeds extract and assessment of its biological effects Graphene nanoribbon FET technology-based OTA for optimizing fast and energy-efficient electronics for IoT application: Next-generation circuit design Construction of ZnCo2O4/Ag3PO4 composite photocatalyst for enhanced photocatalytic performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1