A multilayer nanophotonic interconnection network for on-chip many-core communications

Xiang Zhang, A. Louri
{"title":"A multilayer nanophotonic interconnection network for on-chip many-core communications","authors":"Xiang Zhang, A. Louri","doi":"10.1145/1837274.1837314","DOIUrl":null,"url":null,"abstract":"Multi-core chips or chip multiprocessors (CMPs) are becoming the de facto architecture for scaling up performance and taking advantage of the increasing transistor count on the chip within reasonable power consumption levels. The projected increase in the number of cores in future CMPs is putting stringent demands on the design of the on-chip network (or network-on-chip, NOC). Nanophotonic interconnects have recently emerged as a viable alternate technology solution for the design of NOC because of their higher communication bandwidth, much reduced power consumption and wiring simplification. Several photonic NOC approaches have recently been proposed. A common feature of almost all of these approaches is the integration of the entire optical network onto a single silicon waveguide layer. However, keeping the entire network on a single layer has a serious implication for power losses and design complexity due to the large amount of waveguide crossings. In this paper, we propose MPNOC: a multilayer photonic networks-on-chip. MPNOC combines the recent advances in silicon photonics and three-dimensional (3D) stacking technology with architectural innovations in an integrated architecture that provides ample bandwidth, low latency, and energy efficient on-chip communications for future CMPs. Simulation results show MPNOC can achieve 81.92 TFLOP/s peak bandwidth and an energy savings up to 23% compared to other proposed planar photonic NOC architectures.","PeriodicalId":87346,"journal":{"name":"Proceedings. Design Automation Conference","volume":"56 1","pages":"156-161"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1837274.1837314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Multi-core chips or chip multiprocessors (CMPs) are becoming the de facto architecture for scaling up performance and taking advantage of the increasing transistor count on the chip within reasonable power consumption levels. The projected increase in the number of cores in future CMPs is putting stringent demands on the design of the on-chip network (or network-on-chip, NOC). Nanophotonic interconnects have recently emerged as a viable alternate technology solution for the design of NOC because of their higher communication bandwidth, much reduced power consumption and wiring simplification. Several photonic NOC approaches have recently been proposed. A common feature of almost all of these approaches is the integration of the entire optical network onto a single silicon waveguide layer. However, keeping the entire network on a single layer has a serious implication for power losses and design complexity due to the large amount of waveguide crossings. In this paper, we propose MPNOC: a multilayer photonic networks-on-chip. MPNOC combines the recent advances in silicon photonics and three-dimensional (3D) stacking technology with architectural innovations in an integrated architecture that provides ample bandwidth, low latency, and energy efficient on-chip communications for future CMPs. Simulation results show MPNOC can achieve 81.92 TFLOP/s peak bandwidth and an energy savings up to 23% compared to other proposed planar photonic NOC architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于片上多核通信的多层纳米光子互连网络
多核芯片或芯片多处理器(cmp)正在成为在合理的功耗水平下扩展性能和利用芯片上不断增加的晶体管数量的事实上的架构。预计未来cmp中核心数量的增加对片上网络(或片上网络,NOC)的设计提出了严格的要求。纳米光子互连由于其更高的通信带宽、更低的功耗和简化的布线,最近成为NOC设计的可行替代技术解决方案。最近提出了几种光子NOC方法。几乎所有这些方法的一个共同特点是将整个光网络集成到单个硅波导层上。然而,由于大量的波导交叉,将整个网络保持在单层上对功率损耗和设计复杂性有严重的影响。本文提出一种多层片上光子网络(MPNOC)。MPNOC将硅光子学和三维(3D)堆叠技术的最新进展与集成架构中的架构创新相结合,为未来的cmp提供充足的带宽,低延迟和节能的片上通信。仿真结果表明,与其他提出的平面光子NOC架构相比,MPNOC可以实现81.92 TFLOP/s的峰值带宽,节能高达23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models. DAC '22: 59th ACM/IEEE Design Automation Conference, San Francisco, California, USA, July 10 - 14, 2022 General Chair's Message Exploiting Computation Reuse for Stencil Accelerators. Reconciling remote attestation and safety-critical operation on simple IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1