New kernel methods for phenotype prediction from genotype data.

Ritsuko Onuki, T. Shibuya, M. Kanehisa
{"title":"New kernel methods for phenotype prediction from genotype data.","authors":"Ritsuko Onuki, T. Shibuya, M. Kanehisa","doi":"10.1142/9781848165786_0011","DOIUrl":null,"url":null,"abstract":"Phenotype prediction from genotype data is one of the most important issues in computational genetics. In this work, we propose a new kernel (i.e., an SVM: Support Vector Machine) method for phenotype prediction from genotype data. In our method, we first infer multiple suboptimal haplotype candidates from each genotype by using the HMM (Hidden Markov Model), and the kernel matrix is computed based on the predicted haplotype candidates and their emission probabilities from the HMM. We validated the performance of our method through experiments on several datasets: One is an artificially constructed dataset via a program GeneArtisan, others are a real dataset of the NAT2 gene from the international HapMap project, and a real dataset of genotypes of diseased individuals. The experiments show that our method is superior to ordinary naive kernel methods (i.e., not based on haplotype prediction), especially in cases of strong LD (linkage disequilibrium).","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":"97 1","pages":"132-41"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848165786_0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Phenotype prediction from genotype data is one of the most important issues in computational genetics. In this work, we propose a new kernel (i.e., an SVM: Support Vector Machine) method for phenotype prediction from genotype data. In our method, we first infer multiple suboptimal haplotype candidates from each genotype by using the HMM (Hidden Markov Model), and the kernel matrix is computed based on the predicted haplotype candidates and their emission probabilities from the HMM. We validated the performance of our method through experiments on several datasets: One is an artificially constructed dataset via a program GeneArtisan, others are a real dataset of the NAT2 gene from the international HapMap project, and a real dataset of genotypes of diseased individuals. The experiments show that our method is superior to ordinary naive kernel methods (i.e., not based on haplotype prediction), especially in cases of strong LD (linkage disequilibrium).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从基因型数据预测表型的新核心方法。
从基因型数据预测表型是计算遗传学中最重要的问题之一。在这项工作中,我们提出了一种新的核(即SVM:支持向量机)方法,用于从基因型数据中预测表型。该方法首先利用隐马尔可夫模型(HMM)从每个基因型中推断出多个次优候选单倍型,然后根据预测的候选单倍型及其在隐马尔可夫模型中的发射概率计算核矩阵。我们通过几个数据集的实验验证了我们方法的性能:一个是通过GeneArtisan程序人工构建的数据集,另一个是来自国际HapMap项目的NAT2基因的真实数据集,以及患病个体的真实基因型数据集。实验表明,我们的方法优于普通的朴素核方法(即不基于单倍型预测),特别是在强LD(连锁不平衡)的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking-calculation-based method for predicting protein-RNA interactions. Sign: large-scale gene network estimation environment for high performance computing. Linear regression models predicting strength of transcriptional activity of promoters. Database for crude drugs and Kampo medicine. Mechanism of cell cycle disruption by multiple p53 pulses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1