Assessing the effectiveness of transfer learning strategies in BLSTM networks for speech fenoising

IF 0.1 Q4 MULTIDISCIPLINARY SCIENCES Tecnologia en Marcha Pub Date : 2022-11-16 DOI:10.18845/tm.v35i8.6448
Marvin Coto-Jiménez, Astryd González-Salazar, Michelle Gutiérrez-Muñoz
{"title":"Assessing the effectiveness of transfer learning strategies in BLSTM networks for speech fenoising","authors":"Marvin Coto-Jiménez, Astryd González-Salazar, Michelle Gutiérrez-Muñoz","doi":"10.18845/tm.v35i8.6448","DOIUrl":null,"url":null,"abstract":"Denoising speech signals represent a challenging task due to the increasing number of applications and technologies currently implemented in communication and portable devices. In those applications, challenging environmental conditions such as background noise, reverberation, and other sound artifacts can affect the quality of the signals. As a result, it also impacts the systems for speech recognition, speaker identification, and sound source localization, among many others. For denoising the speech signals degraded with the many kinds and possibly different levels of noise, several algorithms have been proposed during the past decades, with recent proposals based on deep learning presented as state-of-the-art, in particular those based on Long Short-Term Memory Networks (LSTM and Bidirectional-LSMT). In this work, a comparative study on different transfer learning strategies for reducing training time and increase the effectiveness of this kind of network is presented. The reduction in training time is one of the most critical challenges due to the high computational cost of training LSTM and BLSTM. Those strategies arose from the different options to initialize the networks, using clean or noisy information of several types. Results show the convenience of transferring information from a single case of denoising network to the rest, with a significant reduction in training time and denoising capabilities of the BLSTM networks.","PeriodicalId":42957,"journal":{"name":"Tecnologia en Marcha","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnologia en Marcha","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18845/tm.v35i8.6448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Denoising speech signals represent a challenging task due to the increasing number of applications and technologies currently implemented in communication and portable devices. In those applications, challenging environmental conditions such as background noise, reverberation, and other sound artifacts can affect the quality of the signals. As a result, it also impacts the systems for speech recognition, speaker identification, and sound source localization, among many others. For denoising the speech signals degraded with the many kinds and possibly different levels of noise, several algorithms have been proposed during the past decades, with recent proposals based on deep learning presented as state-of-the-art, in particular those based on Long Short-Term Memory Networks (LSTM and Bidirectional-LSMT). In this work, a comparative study on different transfer learning strategies for reducing training time and increase the effectiveness of this kind of network is presented. The reduction in training time is one of the most critical challenges due to the high computational cost of training LSTM and BLSTM. Those strategies arose from the different options to initialize the networks, using clean or noisy information of several types. Results show the convenience of transferring information from a single case of denoising network to the rest, with a significant reduction in training time and denoising capabilities of the BLSTM networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估迁移学习策略在BLSTM网络中用于语音去噪的有效性
由于目前在通信和便携式设备中实现的应用和技术越来越多,语音信号降噪是一项具有挑战性的任务。在这些应用中,具有挑战性的环境条件,如背景噪声、混响和其他声音干扰都会影响信号的质量。因此,它也会影响语音识别、说话人识别和声源定位等系统。在过去的几十年里,人们提出了几种算法来去噪被许多种类和可能不同程度的噪声退化的语音信号,最近的一些基于深度学习的建议被认为是最先进的,特别是那些基于长短期记忆网络(LSTM)和双向lsmt的算法。本文对不同的迁移学习策略进行了比较研究,以减少网络的训练时间,提高网络的有效性。由于训练LSTM和BLSTM的计算成本很高,减少训练时间是最关键的挑战之一。这些策略源于初始化网络的不同选择,使用几种类型的干净或噪声信息。结果表明,BLSTM网络可以方便地将信息从单个去噪网络传递到其他网络,并显著减少了训练时间和去噪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tecnologia en Marcha
Tecnologia en Marcha MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
93
审稿时长
28 weeks
期刊最新文献
Gestión de Residuos en proyectos de construcción de viviendas en Costa Rica: teoría versus práctica Enseñanza del ordenamiento territorial como herramienta en la gestión de proyectos de obra pública Transferencia de conocimiento desde las universidades a las empresas Virtualidad en la enseñanza de investigación en la maestría en Gerencia de Proyectos del Tecnológico de Costa Rica Impacto de la metodología BIM en la gestión de proyectos de construcción
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1