A Nonparametric Test of a Strong Leverage Hypothesis

O. Linton, Yoon-Jae Whang, Yu-Min Yen
{"title":"A Nonparametric Test of a Strong Leverage Hypothesis","authors":"O. Linton, Yoon-Jae Whang, Yu-Min Yen","doi":"10.2139/ssrn.2145341","DOIUrl":null,"url":null,"abstract":"The so-called leverage hypothesis is that negative shocks to prices/returns aect volatility more than equal positive shocks. Whether this is attributable to changing nancial leverage is still subject to dispute but the terminology is in wide use. There are many tests of the leverage hypothesis using discrete time data. These typically involve tting of a general parametric or semiparametric model to conditional volatility and then testing the implied restrictions on parameters or curves. We propose an alternative way of testing this hypothesis using realized volatility as an alternative direct nonparametric measure. Our null hypothesis is of conditional distributional dominance and so is much stronger than the usual hypotheses considered previously. We implement our test on a number of stock return datasets using intraday data over a long span. We nd powerful evidence in favour of our hypothesis.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2145341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The so-called leverage hypothesis is that negative shocks to prices/returns aect volatility more than equal positive shocks. Whether this is attributable to changing nancial leverage is still subject to dispute but the terminology is in wide use. There are many tests of the leverage hypothesis using discrete time data. These typically involve tting of a general parametric or semiparametric model to conditional volatility and then testing the implied restrictions on parameters or curves. We propose an alternative way of testing this hypothesis using realized volatility as an alternative direct nonparametric measure. Our null hypothesis is of conditional distributional dominance and so is much stronger than the usual hypotheses considered previously. We implement our test on a number of stock return datasets using intraday data over a long span. We nd powerful evidence in favour of our hypothesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强杠杆假设的非参数检验
所谓的杠杆假设是,对价格/回报的负面冲击对波动性的影响大于正面冲击。这是否归因于不断变化的财务杠杆仍存在争议,但该术语已被广泛使用。利用离散时间数据对杠杆假设进行了许多检验。这些通常涉及将一般参数或半参数模型用于条件波动,然后测试参数或曲线上的隐含限制。我们提出了另一种方法来检验这一假设,使用已实现的波动率作为替代的直接非参数度量。我们的零假设是条件分布优势,因此比之前考虑的通常假设强得多。我们在许多股票回报数据集上实现了我们的测试,这些数据集使用了长时间内的日内数据。我们有强有力的证据支持我们的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Estimation of Pricing Kernels and Market-Implied Densities Futures-Trading Activity and Jump Risk: Evidence From the Bitcoin Market Partial Identification of Discrete Instrumental Variable Models using Shape Restrictions Frequency Dependent Risk Spatial Heterogeneity in the Borrowers' Mortgage Termination Decision – a Nonparametric Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1