{"title":"Protecting consumer privacy from electric load monitoring","authors":"Stephen E. McLaughlin, P. Mcdaniel, W. Aiello","doi":"10.1145/2046707.2046720","DOIUrl":null,"url":null,"abstract":"The smart grid introduces concerns for the loss of consumer privacy; recently deployed smart meters retain and distribute highly accurate profiles of home energy use. These profiles can be mined by Non Intrusive Load Monitors (NILMs) to expose much of the human activity within the served site. This paper introduces a new class of algorithms and systems, called Non Intrusive Load Leveling (NILL) to combat potential invasions of privacy. NILL uses an in-residence battery to mask variance in load on the grid, thus eliminating exposure of the appliance-driven information used to compromise consumer privacy. We use real residential energy use profiles to drive four simulated deployments of NILL. The simulations show that NILL exposes only 1.1 to 5.9 useful energy events per day hidden amongst hundreds or thousands of similar battery-suppressed events. Thus, the energy profiles exhibited by NILL are largely useless for current NILM algorithms. Surprisingly, such privacy gains can be achieved using battery systems whose storage capacity is far lower than the residence's aggregate load average. We conclude by discussing how the costs of NILL can be offset by energy savings under tiered energy schedules.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"251","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2046720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 251

Abstract

The smart grid introduces concerns for the loss of consumer privacy; recently deployed smart meters retain and distribute highly accurate profiles of home energy use. These profiles can be mined by Non Intrusive Load Monitors (NILMs) to expose much of the human activity within the served site. This paper introduces a new class of algorithms and systems, called Non Intrusive Load Leveling (NILL) to combat potential invasions of privacy. NILL uses an in-residence battery to mask variance in load on the grid, thus eliminating exposure of the appliance-driven information used to compromise consumer privacy. We use real residential energy use profiles to drive four simulated deployments of NILL. The simulations show that NILL exposes only 1.1 to 5.9 useful energy events per day hidden amongst hundreds or thousands of similar battery-suppressed events. Thus, the energy profiles exhibited by NILL are largely useless for current NILM algorithms. Surprisingly, such privacy gains can be achieved using battery systems whose storage capacity is far lower than the residence's aggregate load average. We conclude by discussing how the costs of NILL can be offset by energy savings under tiered energy schedules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保护消费者隐私免受电力负荷监控
智能电网带来了对消费者隐私丧失的担忧;最近部署的智能电表保留和分发家庭能源使用的高度精确的概况。这些配置文件可以由非侵入式负载监视器(nilm)挖掘,以暴露服务站点内的大部分人类活动。本文介绍了一类新的算法和系统,称为非侵入性负载均衡(NILL),以对抗潜在的隐私侵犯。NILL使用内置电池来掩盖电网上负载的变化,从而消除了用于损害消费者隐私的设备驱动信息的暴露。我们使用真实的住宅能源使用概况来驱动NILL的四个模拟部署。模拟表明,NILL每天只暴露1.1到5.9个有用的能量事件,隐藏在数百或数千个类似的电池抑制事件中。因此,nil所显示的能量分布在很大程度上对当前的NILM算法毫无用处。令人惊讶的是,这样的隐私收益可以通过电池系统来实现,其存储容量远低于住宅总负荷的平均水平。最后,我们讨论了在分层能源计划下,NILL的成本如何被节约的能源所抵消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data. CCS '21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021 WAHC '21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November 2021 Incremental Learning Algorithm of Data Complexity Based on KNN Classifier How to Accurately and Privately Identify Anomalies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1