HOTFUZ: Cost‐effective higher‐order mutation‐based fault localization

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Testing Verification & Reliability Pub Date : 2021-12-13 DOI:10.1002/stvr.1802
Jong-In Jang, Duksan Ryu, Jong-Chan Baik
{"title":"HOTFUZ: Cost‐effective higher‐order mutation‐based fault localization","authors":"Jong-In Jang, Duksan Ryu, Jong-Chan Baik","doi":"10.1002/stvr.1802","DOIUrl":null,"url":null,"abstract":"Fault localization techniques are used to deduce the exact source of a failure from a set of failure indications while debugging software and play a crucial role in improving software quality. Mutation‐based fault localization (MBFL) techniques are proposed to localize faults at a finer granularity and with higher accuracy than traditional fault localization techniques. Despite the technique's effectiveness, the immense cost of mutation analysis hinders MBFL's practical application in the industry. Various mutation alternative strategies are utilized to lower the cost of MBFL, but they sacrifice the accuracy of localization results. Higher‐order mutation testing was proposed to search for valuable mutants that drive testing harder and reduce the overall test effort. However, higher‐order mutants (HOMs) never have been used to address the cost problem of MBFL to the extent of our knowledge. This paper proposes a novel, cost‐effective MBFL technique called HOTFUZ, Higher‐Order muTation‐based FaUlt localiZation, that employs HOMs to reduce the cost while minimizing the accuracy degradation. HOTFUZ combines mutants of a program under test into HOMs to decrease the number of mutants by more than half, depending on the order of HOMs. An experimental study is conducted using 65 real‐world faults of CoREBench to assess the proposed approach's cost‐effectiveness. The experimental results show that HOTFUZ outperforms the extant mutation alternative strategies by localizing faults more accurately using the same number of mutants executed. HOTFUZ has three main benefits over existing mutant reduction techniques for MBFL: (a) It keeps the advantage of using the whole set of mutation operators; (b) it does not discard generated mutants randomly for the sake of efficiency; and, finally, (c) it significantly decreases the proportion of equivalent mutants.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1802","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

Fault localization techniques are used to deduce the exact source of a failure from a set of failure indications while debugging software and play a crucial role in improving software quality. Mutation‐based fault localization (MBFL) techniques are proposed to localize faults at a finer granularity and with higher accuracy than traditional fault localization techniques. Despite the technique's effectiveness, the immense cost of mutation analysis hinders MBFL's practical application in the industry. Various mutation alternative strategies are utilized to lower the cost of MBFL, but they sacrifice the accuracy of localization results. Higher‐order mutation testing was proposed to search for valuable mutants that drive testing harder and reduce the overall test effort. However, higher‐order mutants (HOMs) never have been used to address the cost problem of MBFL to the extent of our knowledge. This paper proposes a novel, cost‐effective MBFL technique called HOTFUZ, Higher‐Order muTation‐based FaUlt localiZation, that employs HOMs to reduce the cost while minimizing the accuracy degradation. HOTFUZ combines mutants of a program under test into HOMs to decrease the number of mutants by more than half, depending on the order of HOMs. An experimental study is conducted using 65 real‐world faults of CoREBench to assess the proposed approach's cost‐effectiveness. The experimental results show that HOTFUZ outperforms the extant mutation alternative strategies by localizing faults more accurately using the same number of mutants executed. HOTFUZ has three main benefits over existing mutant reduction techniques for MBFL: (a) It keeps the advantage of using the whole set of mutation operators; (b) it does not discard generated mutants randomly for the sake of efficiency; and, finally, (c) it significantly decreases the proportion of equivalent mutants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HOTFUZ:基于高阶突变的低成本故障定位
故障定位技术用于在调试软件时从一组故障指示中推断出故障的确切来源,对提高软件质量起着至关重要的作用。基于突变的故障定位(MBFL)技术比传统的故障定位技术在更细的粒度和更高的精度上进行故障定位。尽管该技术很有效,但突变分析的巨大成本阻碍了MBFL在工业中的实际应用。为了降低MBFL的成本,采用了多种突变替代策略,但牺牲了定位结果的准确性。提出了高阶突变测试,以搜索有价值的突变,使测试更加困难,并减少整体测试工作量。然而,据我们所知,高阶突变体(HOMs)从未被用于解决MBFL的成本问题。本文提出了一种新颖的、具有成本效益的MBFL技术,称为HOTFUZ,即基于高阶突变的故障定位技术,该技术利用HOMs来降低成本,同时最大限度地降低精度退化。HOTFUZ将被测程序的突变体组合到HOMs中,根据HOMs的顺序,将突变体的数量减少一半以上。利用CoREBench的65个真实故障进行了一项实验研究,以评估所提出方法的成本效益。实验结果表明,HOTFUZ在执行相同数量的突变时,能够更准确地定位故障,优于现有的突变替代策略。与现有的MBFL突变减少技术相比,HOTFUZ有三个主要优点:(a)它保留了使用全套突变算子的优势;(b)不会为了效率而随意丢弃产生的突变体;最后,(c)显著降低了等效突变体的比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Testing Verification & Reliability
Software Testing Verification & Reliability 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
34
审稿时长
>12 weeks
期刊介绍: The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it. The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software. The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to: -New criteria for software testing and verification -Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures -Model based testing -Formal verification techniques such as model-checking -Comparison of testing and verification techniques -Measurement of and metrics for testing, verification and reliability -Industrial experience with cutting edge techniques -Descriptions and evaluations of commercial and open-source software testing tools -Reliability modeling, measurement and application -Testing and verification of software security -Automated test data generation -Process issues and methods -Non-functional testing
期刊最新文献
Model‐based testing, test case prioritization and testing of virtual reality applications In vivo testing and integration of proving and testing Mutation testing optimisations using the Clang front‐end Semantic‐aware two‐phase test case prioritization for continuous integration Exploiting deep reinforcement learning and metamorphic testing to automatically test virtual reality applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1