Finite-temperature materials modeling from the quantum nuclei to the hot electron regime

Nataliya Lopanitsyna, Chiheb Ben Mahmoud, M. Ceriotti
{"title":"Finite-temperature materials modeling from the quantum nuclei to the hot electron regime","authors":"Nataliya Lopanitsyna, Chiheb Ben Mahmoud, M. Ceriotti","doi":"10.1103/PHYSREVMATERIALS.5.043802","DOIUrl":null,"url":null,"abstract":"Atomistic simulations provide insights into structure-property relations on an atomic size and length scale, that are complementary to the macroscopic observables that can be obtained from experiments. Quantitative predictions, however, are usually hindered by the need to strike a balance between the accuracy of the calculation of the interatomic potential and the modelling of realistic thermodynamic conditions. Machine-learning techniques make it possible to efficiently approximate the outcome of accurate electronic-structure calculations, that can therefore be combined with extensive thermodynamic sampling. We take elemental nickel as a prototypical material, whose alloys have applications from cryogenic temperatures up to close to their melting point, and use it to demonstrate how a combination of machine-learning models of electronic properties and statistical sampling methods makes it possible to compute accurate finite-temperature properties at an affordable cost. We demonstrate the calculation of a broad array of bulk, interfacial and defect properties over a temperature range from 100 to 2500 K, modeling also, when needed, the impact of nuclear quantum fluctuations and electronic entropy. The framework we demonstrate here can be easily generalized to more complex alloys and different classes of materials.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVMATERIALS.5.043802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Atomistic simulations provide insights into structure-property relations on an atomic size and length scale, that are complementary to the macroscopic observables that can be obtained from experiments. Quantitative predictions, however, are usually hindered by the need to strike a balance between the accuracy of the calculation of the interatomic potential and the modelling of realistic thermodynamic conditions. Machine-learning techniques make it possible to efficiently approximate the outcome of accurate electronic-structure calculations, that can therefore be combined with extensive thermodynamic sampling. We take elemental nickel as a prototypical material, whose alloys have applications from cryogenic temperatures up to close to their melting point, and use it to demonstrate how a combination of machine-learning models of electronic properties and statistical sampling methods makes it possible to compute accurate finite-temperature properties at an affordable cost. We demonstrate the calculation of a broad array of bulk, interfacial and defect properties over a temperature range from 100 to 2500 K, modeling also, when needed, the impact of nuclear quantum fluctuations and electronic entropy. The framework we demonstrate here can be easily generalized to more complex alloys and different classes of materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从量子核到热电子态的有限温度材料模型
原子模拟提供了对原子大小和长度尺度上的结构-性质关系的见解,这是对可以从实验中获得的宏观观察结果的补充。然而,由于需要在原子间势计算的准确性和实际热力学条件的模拟之间取得平衡,定量预测通常受到阻碍。机器学习技术可以有效地近似准确的电子结构计算的结果,因此可以与广泛的热力学采样相结合。我们以元素镍为原型材料,其合金具有从低温到接近熔点的应用,并使用它来演示如何将电子特性的机器学习模型和统计抽样方法相结合,从而以可承受的成本计算精确的有限温度特性。我们演示了在100到2500 K的温度范围内计算大量的体、界面和缺陷特性,并在需要时模拟了核量子涨落和电子熵的影响。我们在这里展示的框架可以很容易地推广到更复杂的合金和不同类别的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A pathway towards high throughput Quantum Monte Carlo simulations for alloys: A case study of two-dimensional (2D) GaSₓSe₁₋ₓ Data analytics accelerates the experimental discovery of new thermoelectric materials with extremely high figure of merit Thermal laser evaporation of elements from across the periodic table Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn–Cr)AlGe films fabricated onto thermally oxidized silicon substrates The Mesoscale Crystallinity of Nacreous Pearls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1